Medium-ring diphosphines from diphosphabicyclo[k.l.0]alkanes: stereoselective syntheses, structure and properties

Roger W. Alder, ${ }^{*, a}$ Christian Ganter, ${ }^{a}$ Michelle Gil, ${ }^{a}$ Rolf Gleiter, ${ }^{b}$
Christopher J. Harris, ${ }^{,}$Stephanie E. Harris, ${ }^{,}$Holger Lange, ${ }^{b}$ A. Guy Orpen ${ }^{a}$ and Peter N. Taylor ${ }^{a}$
${ }^{a}$ School of Chemistry, University of Bristol, Cantock's Close, Bristol, UK BS8 1TS
${ }^{b}$ Organisch-Chemisches Institut der Universität Heidelberg, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany

Abstract

A series of $1, k+2$-diphosphabicyclo[k.l.0]alkanes 2 b -e are prepared by $\mathrm{Bu}^{n}{ }^{n} \mathrm{Li}$-promoted cyclisation of $1, \omega$-diphosphinoalkanes, followed by alkylation and cycloalkylation with $1, \omega$-dihaloalkanes. These compounds appear to be exclusively cis-isomers except 1,6-diphosphabicyclo[5.4.0]undecane 2 e which is a 3: 1 cisltrans mixture. Mono-quaternisation of $c i s-1, k+2$-diphosphabicyclo[k.l.0]alkanes, followed by treatment of the mono-quaternary salts with alkyllithium or Grignard reagents produces cis-1,n-disubstituted-1, n-diphosphacycloalkanes 4 exclusively; examples containing 8-, 9 - and 10 -membered rings and a range of substituents on phosphorus are described. Di-quaternisation of $1, k+2$-diphosphabicyclo[k.l.0]alkanes, followed by hydrolysis, yields the trans-isomers of $1, n$-disubstituted- $1, n$-diphosphacycloalkane monooxides 6 exclusively; reduction of these with LiAlH_{4} in benzene gives largely trans-1,n-disubstituted-1,n-diphosphacycloalkanes 7, but is not completely stereoselective. The structure and properties of these diphosphacycloalkanes are discussed. He(I) photoelectron spectra of 1,5-diphosphabicyclo[3.3.0]octane, 1,6-diphosphabicyclo[4.3.0]nonane and 1,6-diphosphabicyclo[4.4.0]decane show little evidence of interaction between phosphorus lone pairs, unlike the corresponding hydrazines. The medium-ring diphosphacycloalkanes, 1,5-dimethyl-1,5-diphosphacyclooctane and 1,6-dimethyl-1,6diphosphacyclodecane also show little evidence of interaction between phosphorus lone pairs.

Diphosphines in which the two phosphorus atoms are linked by a $\mathrm{C}_{1}-\mathrm{C}_{4}$ chain are extremely important chelating ligands in organometallic chemistry, and a wide variety of structures have been developed. Cyclic diphosphines in which the two phosphine lone pairs are cis could also be useful chelating ligands, potentially providing tighter control on lone pair orientation, and thus on chelating properties, but synthetic routes to these compounds are relatively undeveloped and the compounds are obtained as mixtures of stereoisomers, sometimes separable by chromatography. Known compounds include P, P-diphenyl derivatives of 1,4-diphospha-cyclohexane ${ }^{1}$ and -cycloheptane, ${ }^{1}$ and 1,5-diphosphacyclooctane. ${ }^{1,2,3}$ An ingenious stereoselective synthesis of 1,5,9-triphosphacyclododecane and tertiary derivatives has recently been reported in which the triphosphine is created around a metal template. ${ }^{4}$

As part of our investigation of the intrabridgehead chemistry ${ }^{5}$ of diphosphines, ${ }^{6}$ we have developed novel synthetic routes to medium-ring diphosphines containing 8 -, 9 - and $10-$ membered rings and a range of substituents on phosphorus via diphosphabicycloalkanes. ${ }^{7-9}$ This approach permits the preparation of pure cis-isomers which are potentially valuable chelating ligands; we have also developed a slightly less stereoselective route to the corresponding trans-isomers. The details of these preparations are described in this paper, along with the structure and properties of the compounds.

Results and discussion

Synthetic routes

The stereoselective route to pure cis-1,n-disubstituted-1,ndiphosphacycloalkanes $\mathbf{4 a - g}$ is shown in Scheme 1. The scope of these reactions are discussed later; the observed stereochemistry depends on (i) formation of cis-isomers of $1, k+$ 2-diphosphabicyclo[k.l.0]alkanes 2 during cycloalkylation of monocyclic diphosphines and (ii) stereoselective $\mathrm{P}-\mathrm{P}$ bond

Scheme 1 Reagents and conditions: i $\mathrm{Bu}^{n} \mathrm{Li},-\mathrm{H}_{2}$; ii $\mathrm{Br}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{Cl}$, $\mathrm{Bu}^{n} \mathrm{Li}$; iii RX ; iv $\mathrm{R}^{\prime} \mathrm{Li}$ or $\mathrm{R}^{\prime} \mathrm{MgBr}$
cleavage during reaction of mono-quaternised $1, k+2$ diphosphabicyclo[k.l.0]alkanes with alkyllithium or Grignard reagents.

The configuration of the $1, k+2$-diphosphabicyclo[k.l.0]alkanes $\mathbf{2}$ is established in three cases (a) the disulfide derived from 2a has been reported ${ }^{10}$ to be cis, (b) X-ray structure determination of the disulfide derived from $\mathbf{2 b}$ shows it to be

Fig. 1 X-Ray structure of (a) the disulfide of 1,6-diphosphabicyclo[4.3.0]nonane $\mathbf{2 b} . \mathbf{S}_{\mathbf{2}}$ and (b) the disulfide of 1,6-diphosphabicyclo[4.4.0]decane $\mathbf{2 c} . \mathbf{S}_{\mathbf{2}}$
cis [Fig. 1(a)] and (c) we have reported ${ }^{7}$ the cis-structure of $\mathbf{2 c}$; the X-ray structure of the disulfide of $\mathbf{2 c}$ is shown in Fig. 1(b). In view of the calculations reported below and the ${ }^{31} \mathrm{P}$ chemical shifts, we believe all the compounds are cis, with the exception of the minor isomer of $\mathbf{2 e}$. Selected bond lengths and angles for the structures $\mathbf{2 b} \cdot \mathbf{S}_{2}$ and $\mathbf{2 c} \cdot \mathbf{S}_{\mathbf{2}}$ are given in Table 1. In these structures the P-P distances are close to $2.20 \AA$, that for $\mathbf{2 b} . \mathbf{S}_{2}$ being marginally longer than that for $\mathbf{2 c} \cdot \mathbf{S}_{\mathbf{2}}$, possibly as a consequence of ring strain (see below). The $\mathrm{P}=\mathrm{S}$ distances are all about $1.94 \AA$, the $\mathrm{P}-\mathrm{C}$ are $1.81 \AA$ and the (ordered) C-C distances are $c a .1 .52 \AA$. The effects of ring strain are most notable on the P-P-C angles of the 5-membered ring in $\mathbf{2 b} . \mathbf{S}_{2}$ which are $c a .93 .5^{\circ}$, other angles at both P and S being closer to tetrahedral values.

The cycloalkylations which form the $1, k+2$-diphosphabicyclo[k.l.0]alkanes are undoubtedly kinetically-controlled, but the equilibrium preferences for cis- versus trans-isomers merits consideration first. A predicted strong preference for the cis-isomer of 1,6-diphosphabicyclo[4.4.0]decane was discussed in our preliminary communication, ${ }^{7}$ and was ascribed to easier accommodation of the long $\mathrm{P}-\mathrm{P}$ bond in the cis- relative to the trans-isomer. This preference appears to be general according to semi-empirical PM3 calculations on the other ring systems (Table 2). Semi-empirical methods like PM3 are ineffective for conformational searching but the MM2 force field is not parameterised for $\mathrm{P}-\mathrm{P}$ bonds, so the following procedure was used to locate preferred conformations. The corresponding $1, k+2$-disilabicyclic[k.l.0]alkane was subjected to a BatchMin multiple minimum search ${ }^{11}$ using MM2 within MacroModel, the three lowest conformations were then converted back to the diphosphine and minimised using PM3; preferred conformations found this way seem reasonable (e.g. all cyclohexane

Table 1 Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for $\mathbf{2 b} \cdot \mathbf{S}_{2}$ and $\mathbf{2 c} . \mathbf{S}_{\mathbf{2}}$

(a) 2b.S	
2	
$\mathrm{P}(1)-\mathrm{P}(2)$	$2.208(3)$
$\mathrm{P}(1)-\mathrm{S}(1)$	$1.940(3)$
$\mathrm{P}(1)-\mathrm{C}(4)$	$1.807(8)$
$\mathrm{P}(1)-\mathrm{C}(7)$	$1.802(7)$
$\mathrm{P}(2)-\mathrm{S}(2)$	$1.940(3)$
$\mathrm{P}(2)-\mathrm{C}(1)$	$1.813(7)$
$\mathrm{P}(2)-\mathrm{C}(5)$	$1.811(7)$
$\mathrm{P}(2)-\mathrm{P}(1)-\mathrm{S}(1)$	$113.3(1)$
$\mathrm{P}(2)-\mathrm{P}(1)-\mathrm{C}(4)$	$106.9(3)$
$\mathrm{S}(1)-\mathrm{P}(1)-\mathrm{C}(4)$	$114.5(3)$
$\mathrm{P}(2)-\mathrm{P}(1)-\mathrm{C}(7)$	$93.3(3)$
$\mathrm{S}(1)-\mathrm{P}(1)-\mathrm{C}(7)$	$116.1(3)$
$\mathrm{C}(4)-\mathrm{P}(1)-\mathrm{C}(7)$	$110.7(3)$
$\mathrm{P}(1)-\mathrm{P}(2)-\mathrm{S}(2)$	$115.9(1)$
$\mathrm{P}(1)-\mathrm{P}(2)-\mathrm{C}(1)$	$103.6(3)$
$\mathrm{S}(2)-\mathrm{P}(2)-\mathrm{C}(1)$	$114.9(3)$
$\mathrm{P}(1)-\mathrm{P}(2)-\mathrm{C}(5)$	$93.7(3)$
$\mathrm{S}(2)-\mathrm{P}(2)-\mathrm{C}(5)$	$118.5(3)$
$\mathrm{C}(1)-\mathrm{P}(2)-\mathrm{C}(5)$	$107.4(4)$
(b) 2c.S	
$\mathrm{P}(1)-\mathrm{S}(1)$	
$\mathrm{P}(1)-\mathrm{C}(4)$	$1.945(1)$
$\mathrm{P}(1)-\mathrm{P}(1 \mathrm{~A})$	$1.806(2)$
$\mathrm{P}(1)-\mathrm{C}(1 \mathrm{~A})$	$2.182(1)$
	$1.811(3)$
$\mathrm{S}(1)-\mathrm{P}(1)-\mathrm{C}(4)$	$114.4(1)$
$\mathrm{S}(1)-\mathrm{P}(1)-\mathrm{P}(1 \mathrm{~A})$	$113.8(1)$
$\mathrm{C}(4)-\mathrm{P}(1)-\mathrm{P}(1 \mathrm{~A})$	$101.5(1)$
$\mathrm{S}(1)-\mathrm{P}(1)-\mathrm{C}(1 \mathrm{~A})$	$115.7(1)$
$\mathrm{C}(4)-\mathrm{P}(1)-\mathrm{C}(1 \mathrm{~A})$	$108.5(1)$
$\mathrm{P}(1 \mathrm{~A})-\mathrm{P}(1)-\mathrm{C}(1 \mathrm{~A})$	$101.2(1)$

Table 2 PM3 Calculated heats of formation for bicyclic [k.l.0]diphosphines

| Compound
 No. | Bicyclic[k.l.0]-
 diphosphine | cis/trans |
| :--- | :--- | :--- | :--- | :--- | | ΔH_{f}
 $\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$ |
| :--- |
| $\mathbf{2 a}$ |
| $\mathbf{2 d}$ |
| $\mathbf{2 d}$ |
| $\mathbf{2 d}$ |
| $\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$ |

rings are in chair form). It can be seen that the preference for the cis-structure decreases as the ring sizes get larger, but is still significant for 2e, the only case where a mixture of isomers is formed. It seems likely that the transition states for formation of the cis- and trans-isomers will show similar con-

Fig. 2 X-Ray structure of the cations of (a) 1-methyl-1-phosphonia-5phosphabicyclo[3.3.0]octane iodide 3a.I, (b) 1-methyl-1-phosphonia-6-phosphabicyclo[4.3.0]nonane iodide 3b.I and (c) 1-methyl-1-phosphonia-6-phosphabicyclo[4.4.0]decane iodide 3c.I
figurational preferences to the final products, but with reduced energy differences due to the length of the forming $\mathrm{P} \cdots \mathrm{C}$ bond.

The bicyclic diphosphines 2 are readily quaternised by normal alkylating agents to give mono-quaternised salts $3 \mathrm{a}-\mathbf{e}$; di-quaternisation only occurs with powerful reagents like methyl triflate (see later). In all cases the stereochemistry of the diphosphines 2 appears to be preserved in the salts 3; X-ray structures for the iodide salts of $\mathbf{3 a - c}$ are shown in Fig. 2, and selected bond lengths and angles for the three structures are given in Table 3. In these structures the $\mathrm{P}-\mathrm{P}$ distances are close to $2.18 \AA$, with a marginal decrease accompanying the increased chain length from $\mathbf{3 a}$ to $\mathbf{3 b}$ to $\mathbf{3 c}$. The quaternary P-methyl distances are about $1.78 \AA$, rather smaller than the $\mathrm{P}-\mathrm{CH}_{2}$ distances which average $1.806 \AA$ for the quaternary phosphorus $\mathrm{P}(1)$ and $1.859 \AA$ for the tertiary phosphorus $\mathrm{P}(2)$. The effects of ring strain are most notable on the $\mathrm{P}-\mathrm{P}-\mathrm{C}$ angles of the 5 -membered rings in $3 \mathbf{a}$ and $\mathbf{3 b}$ which are $c a$. 100° for the quaternary phosphorus and 89° for the tertiary

(a) 3a.I	
$\mathrm{P}(1)-\mathrm{P}(2)$	2.183(2)
$\mathrm{P}(1)-\mathrm{C}(1)$	1.802(4)
$\mathrm{P}(1)-\mathrm{C}(4)$	1.811(5)
$\mathrm{P}(1)-\mathrm{C}(7)$	1.784(4)
$\mathrm{P}(2)-\mathrm{C}(3)$	1.863(4)
$\mathrm{P}(2)-\mathrm{C}(6)$	1.876(5)
$\mathrm{P}(2)-\mathrm{P}(1)-\mathrm{C}(1)$	100.6(2)
$\mathrm{P}(2)-\mathrm{P}(1)-\mathrm{C}(4)$	100.1(2)
$\mathrm{C}(1)-\mathrm{P}(1)-\mathrm{C}(4)$	111.9(2)
$\mathrm{P}(2)-\mathrm{P}(1)-\mathrm{C}(7)$	117.4(2)
$\mathrm{C}(1)-\mathrm{P}(1)-\mathrm{C}(7)$	113.5(2)
$\mathrm{C}(4)-\mathrm{P}(1)-\mathrm{C}(7)$	112.1(2)
$\mathrm{P}(1)-\mathrm{P}(2)-\mathrm{C}(3)$	89.7(2)
$\mathrm{P}(1)-\mathrm{P}(2)-\mathrm{C}(6)$	88.9(2)
$\mathrm{C}(3)-\mathrm{P}(2)-\mathrm{C}(6)$	102.9(2)
(b) for 3b.I	
$\mathrm{P}(1)-\mathrm{P}(2)$	2.179(3)
$\mathrm{P}(1)-\mathrm{C}(1)$	1.835(10)
$\mathrm{P}(1)-\mathrm{C}(4)$	1.801(8)
$\mathrm{P}(1)-\mathrm{C}(8)$	1.759(9)
$\mathrm{P}(2)-\mathrm{C}(3)$	1.849(9)
$\mathrm{P}(2)-\mathrm{C}(7)$	1.882(8)
$\mathrm{P}(2)-\mathrm{P}(1)-\mathrm{C}(1)$	100.6(3)
$\mathrm{P}(2)-\mathrm{P}(1)-\mathrm{C}(4)$	110.3(3)
$\mathrm{C}(1)-\mathrm{P}(1)-\mathrm{C}(4)$	114.7(5)
$\mathrm{P}(2)-\mathrm{P}(1)-\mathrm{C}(8)$	112.2(3)
$\mathrm{C}(1)-\mathrm{P}(1)-\mathrm{C}(8)$	109.2(4)
$\mathrm{C}(4)-\mathrm{P}(1)-\mathrm{C}(8)$	109.6(4)
$\mathrm{P}(1)-\mathrm{P}(2)-\mathrm{C}(3)$	88.2(3)
$\mathrm{P}(1)-\mathrm{P}(2)-\mathrm{C}(7)$	96.5(3)
$\mathrm{C}(3)-\mathrm{P}(2)-\mathrm{C}(7)$	101.5(4)
(c) for 3c.I	
$\mathrm{P}(1)-\mathrm{P}(2)$	2.173(2)
$\mathrm{P}(1)-\mathrm{C}(1)$	1.795(7)
$\mathrm{P}(1)-\mathrm{C}(8)$	1.805(7)
$\mathrm{P}(1)-\mathrm{C}(9)$	1.791(7)
$\mathrm{P}(2)-\mathrm{C}(4)$	1.855(7)
$\mathrm{P}(2)-\mathrm{C}(5)$	1.837(7)
$\mathrm{P}(3)-\mathrm{P}(4)$	$2.171(2)$
$\mathrm{P}(3)-\mathrm{C}(14)$	1.846(7)
$\mathrm{P}(3)-\mathrm{C}(15)$	1.861(8)
$\mathrm{P}(4)-\mathrm{C}(11)$	1.805(6)
$\mathrm{P}(4)-\mathrm{C}(18)$	1.802(8)
$\mathrm{P}(4)-\mathrm{C}(19)$	1.785(7)
$\mathrm{P}(2)-\mathrm{P}(1)-\mathrm{C}(1)$	107.3(2)
$\mathrm{P}(2)-\mathrm{P}(1)-\mathrm{C}(8)$	110.8(2)
$\mathrm{C}(1)-\mathrm{P}(1)-\mathrm{C}(8)$	109.3(3)
$\mathrm{P}(2)-\mathrm{P}(1)-\mathrm{C}(9)$	108.9(2)
$\mathrm{C}(1)-\mathrm{P}(1)-\mathrm{C}(9)$	109.3(4)
$\mathrm{C}(8)-\mathrm{P}(1)-\mathrm{C}(9)$	$111.2(3)$
$\mathrm{P}(1)-\mathrm{P}(2)-\mathrm{C}(4)$	95.2(2)
$\mathrm{P}(1)-\mathrm{P}(2)-\mathrm{C}(5)$	96.7(2)
$\mathrm{C}(4)-\mathrm{P}(2)-\mathrm{C}(5)$	103.5(3)
$\mathrm{P}(4)-\mathrm{P}(3)-\mathrm{C}(14)$	96.7(2)
$\mathrm{P}(4)-\mathrm{P}(3)-\mathrm{C}(15)$	94.9(2)
$\mathrm{C}(14)-\mathrm{P}(3)-\mathrm{C}(15)$	103.7(3)
$\mathrm{P}(3)-\mathrm{P}(4)-\mathrm{C}(11)$	110.4(2)
$\mathrm{P}(3)-\mathrm{P}(4)-\mathrm{C}(18)$	106.2(3)
$\mathrm{C}(11)-\mathrm{P}(4)-\mathrm{C}(18)$	109.5(3)
$\mathrm{P}(3)-\mathrm{P}(4)-\mathrm{C}(19)$	110.7(2)
$\mathrm{C}(11)-\mathrm{P}(4)-\mathrm{C}(19)$	110.2(3)
$\mathrm{C}(18)-\mathrm{P}(4)-\mathrm{C}(19)$	109.8(3)

phosphorus (cf. corresponding values of 109° and 96° for 6 -membered rings), other angles at both P and C are closer to tetrahedral values.

In considering the reaction of alkyllithium or Grignard reagents with $\mathbf{3}$, it is notable that attack occurs at the uncharged phosphorus atom. This reaction appears to be novel, although it has been shown that 1,2-diphenyl-1,2-diphospholane reacts
with alkyllithium reagents with $\mathrm{P}-\mathrm{P}$ bond cleavage, ${ }^{12}$ and there are a number of examples of $\mathrm{P}-\mathrm{P}$ bond cleavage resulting from addition of alkyl halides to tetraalkyldiphosphines. ${ }^{13,14}$ The stereochemistry of the reaction at the $\mathrm{P}-\mathrm{P}^{+}$bond of $\mathbf{3}$ can be accounted for by attack of the organometallic reagent along the $\mathrm{P}-\mathrm{P}$ axis, accompanied by a least-motion ring opening process. It is possible that an intermediate like \mathbf{A} is formed (see next page), although we have no evidence for or against this suggestion.

We now turn to the scope of the various steps in the formation of $\mathbf{3}$. The $1, \omega$-diphosphinoalkanes $\mathbf{1 a - c}$ were prepared by modification of the literature procedures for 1a. ${ }^{15,16}$ Handling procedures for these extremely noxious and pyrophoric compounds are detailed in the Experimental section. Procedures for the cyclisation of 1 were modelled on the method used by Issleib and Thorausch. ${ }^{17}$ Thus a solution of the diphosphine 1a in THF was treated with one equivalent of $\mathrm{Bu}{ }^{n} \mathrm{Li}$ at $-78^{\circ} \mathrm{C}$ and hydrogen was evolved from the reaction mixture on warming to room temperature. ${ }^{31} \mathrm{P}$ NMR spectra of reacting solutions clearly showed the presence of the acyclic mono-anion at $-78^{\circ} \mathrm{C}\left[\delta_{\mathrm{P}}-137.9\left(\mathrm{t},{ }^{1} J_{\mathrm{PH}} 190 \mathrm{~Hz}\right),-162.6\left(\mathrm{~d},{ }^{1} J_{\mathrm{PH}} 155 \mathrm{~Hz}\right)\right]$, and this was replaced by signals for the cyclised mono-anion [δ_{P} $\left.-65.4\left(\mathrm{dd},{ }^{1} J_{\mathrm{PP}} 313,{ }^{1} J_{\mathrm{PH}} 150 \mathrm{~Hz}\right),-141.9(\mathrm{~d})\right]$ as the solution was allowed to warm up, but the ${ }^{31} \mathrm{P}$ NMR spectra failed to reveal any intermediates in this remarkable reaction. After two hours the evolution of gas had subsided and a solution of the cyclic anion remained. From this point Issleib and Thorausch had used two procedures. The first was to treat a solution of the cyclic anion with a second equivalent of $\mathrm{Bu}^{n} \mathrm{Li}$ to form the dianion, which was then reacted with 1,3 -dichloropropane to give $\mathbf{2 a}$ in 11% yield. The second procedure involved the alkylation of the cyclic anion with 1-bromo-3-chloropropane, followed by cyclisation through addition of a second equivalent of $\mathrm{Bu}{ }^{n} \mathrm{Li}$. Despite the extra manipulations that were involved, the latter procedure allowed the isolation of $\mathbf{2 a}$ in an improved yield of 19%. The following further modifications to the second procedure doubled the original yield of $\mathbf{2 a}$ to $40-45 \%$:
i) The handling of air sensitive solutions was kept to a minimum (see the Experimental section).
ii) The first cyclisation stage was left for three hours instead of two.
iii) The solution of cyclic anion was added to the dihaloalkane over two hours. This ensured that the temperature remained at $-78^{\circ} \mathrm{C}$.
iv) In the final intramolecular cyclisation the solvent was allowed to gently reflux as the $\mathrm{Bu}^{n} \mathrm{Li}$ was added.
v) The phosphine was not separated from the inorganic salts prior to distillation.
Using this procedure, $\mathbf{2 b}$ could be prepared in 31% yield from $\mathbf{1 a}$, but preparation by the alternative route from $\mathbf{1 b}$ is slightly preferable (37% yield). Preparation of $\mathbf{2 e}$ by this procedure gave only a 2% yield, but this could be increased to 11% by a five-fold decrease in the phosphine concentration. The low yield suggests that formation of seven-membered rings is close to the limit of this methodology.
Issleib and Thorausch had attempted the cyclisation of $\mathbf{1 b}$ without success. We found however that this could be achieved by working in more dilute solution and leaving the cyclisation step to run for much longer (24 h). Using all the modifications described above, we were able to raise the yield of 2c to 65%, and the mixture of isomers of 2 e could be obtained in 36% yield.
We tried to extend these procedures to the preparation of 1,7-diphosphabicyclo[5.5.0]dodecane starting from $\mathbf{1 c}$, but the cyclisation of the latter does not seem to compete with polymerisation. In dilute solution and after heating at $60^{\circ} \mathrm{C}$ for $20 \mathrm{~h},{ }^{31} \mathrm{P}$ NMR suggested that at best only low concentrations of the cyclic mono-anion were present and attempts to trap this with 1-bromo-3-chloropropane to give $\mathbf{2 d}$ were unsuccessful.

When 1,3-diphosphinopropane and 1,4-diphosphinobutane
were treated with $\mathrm{Bu}^{n} \mathrm{Li}$ at $-78^{\circ} \mathrm{C}$, and then, without warming, with 1 -bromo-4-chlorobutane, a second equivalent of $\mathrm{Bu}^{n} \mathrm{Li}$, and a second equivalent of 1-bromo-4-chlorobutane, followed by warming to $0^{\circ} \mathrm{C}$ and the addition of two more equivalents of $\mathrm{Bu}^{n} \mathrm{Li}, 1,3$-(diphospholano)propane and 1,4(diphospholano)butane were formed (Scheme 2). These com-

Scheme 2 Reagents and conditions: i $\mathrm{Bu}{ }^{n} \mathrm{Li}, \mathrm{Br}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{Cl}$, then $\mathrm{Bu}^{n} \mathrm{Li}$, $-78-0{ }^{\circ} \mathrm{C}$, 2 equiv. $\mathrm{Bu}{ }^{n} \mathrm{Li}$; ii $\mathrm{H}_{2} \mathrm{O}_{2}$; iii $\mathrm{S}_{8}, \mathrm{PhH}$
pounds were useful for comparison purposes, but the yields were not optimised; they could be converted to dioxides and disulfides in the usual way (see the Experimental section).
The route to trans-1, n-disubstituted-1,n-diphosphacycloalkanes depends on dialkylation of $1, k+2$-diphosphabicyclo[k.l. 0]alkanes 2 with powerful alkylating agents like methyl triflate, Scheme 3. The bicyclic di-cations 5 formed are hydrolysed

Scheme 3 Reagents and conditions: i MeOTf; ii $\mathrm{H}_{2} \mathrm{O}$; iii NaOH ; iv LiAlH_{4} in PhH
instantly by water, and we were unable to obtain satisfactory analytical data for these salts. We have made tricyclic propellane analogues of these di-cations, some of which are much more stable hydrolytically, and our understanding of the stereoselectivity of the route to trans-1,n-disubstituted-1, n-diphosphacycloalkanes depends on analogies with the behaviour of these more stable analogues. The stereochemistry of the extremely rapid hydrolytic P-P cleavage of the bicyclic di-alkylated dications can be rationalised by attack of hydroxide along the $\mathrm{P}-\mathrm{P}$ axis, accompanied by a least motion ring opening process. Although we have no direct evidence, it is possible that an intermediate like \mathbf{B} is formed. In the case of tricyclic propellane dications which are hydrolysed much more slowly and in some cases reversibly, adducts which retain P-P bonding, e.g. C, can be isolated. ${ }^{6}$ It is surprisingly easy to isolate the hydrolysis products as diprotonated di-cations, but these are readily converted to neutral diphosphine monooxides by treatment with

Table 4 NMR and photoelectron spectroscopic data for bicyclic[k.l.0]diphosphines

Compound	$\delta_{\mathbf{p}}$	$\mathrm{N}_{\mathrm{PC}}(\alpha-\mathrm{C})$	$\mathrm{N}_{\mathrm{PC}}(\beta-\mathrm{C})$	$\mathrm{N}_{\mathrm{PC}}(\gamma-\mathrm{C})$	Ionisation energy, eV	$\mathrm{CPC}_{\mathrm{av}}\left({ }^{\circ}\right)^{\boldsymbol{a}}$	$\mathrm{CPX}_{\mathrm{av}}\left({ }^{\circ}\right)^{a}$
$\mathbf{2 a}$	-27.81	31	9	-	8.6	102.7	97.5
2b	-56.95	25,23	3,4	-	8.3	102.1	101.0
2c	-77.47	20^{a}	0^{a}	-	8.2	98.3	101.2
2d	-49.36	31,27	11,23	11	101.5	102.9	
cis-2e	-70.19	23,15	6,0	11	99.8	103.8	
trans-2e	-48.34	8,7	0,0	10	108.2	103.0	

${ }^{a}$ From PM3 calculations. $\mathrm{CPC}_{\mathrm{av}}$ is the average of the $\mathrm{C}-\mathrm{P}-\mathrm{C}$ angles, and CPX av is the average of all angles at phosphorus.

base. All these steps appear to be completely stereoselective (${ }^{31} \mathrm{P}$ NMR) but unfortunately we have not been able to find a reagent which will reduce the diphosphine monooxides completely stereoselectively to the trans-1,n-disubstituted- $1, n$ diphosphacycloalkanes. The best results were obtained with LiAlH_{4} in benzene, which typically gave a $95: 5$ ratio of trans- to cis-isomer. Other reagents tried included LiAlH_{4} in ether and THF, HSiCl_{3} and $\mathrm{Si}_{2} \mathrm{Cl}_{6}{ }^{18-20}$ but these either failed to effect clean reduction or gave lower stereoselectivity. We also tried to develop an alternative route to these trans-isomers. Benzyl groups in phosphines like $\mathrm{PhCH}_{2} \mathrm{PPhMe}$ can be displaced with alkyllithium reagents with clean inversion of configuration. ${ }^{21}$ However 4b failed to react with either MeLi or $\mathrm{Bu}^{n} \mathrm{Li}$.

The properties of $\mathbf{1 , k}+\mathbf{2}$-diphosphabicyclo[k.l.0]alkanes

NMR spectra. The ${ }^{31} \mathrm{P}$ chemical shifts (δ_{P}) observed in the $1, k+2$-diphosphabicyclo[$k . l .0]$ alkanes vary widely with ring size (Table 4). Three principal factors are known to affect the ${ }^{31} \mathrm{P}$ chemical shift observed in compounds containing phosphorus. ${ }^{22}$
i) The bond angles at phosphorus and therefore the hybridisation.
ii) The amount of π-bonding between phosphorus and its substituents.
iii) The electronegativity of the substituents.

The phosphorus atoms in the series of bicyclic[n.m.0]diphosphines under investigation all have one phosphorus and two alkyl groups as their substituents. Therefore changes in δ_{P} can probably be attributed to changes in the bond angles at phosphorus, which will be significantly affected by the size of the rings in the bicyclic system. Table 4 also lists the bond angles at phosphorus calculated by PM3 for the range of diphosphines which have been synthesised. It is clear that as the CPC bond angle increases so does the ${ }^{31} \mathrm{P}$ chemical shift, although the trend with reference to the average of all the angles at phosphorus $\left(\mathrm{CPX}_{\mathrm{av}}\right)$ is less clear. Of the two ${ }^{31} \mathrm{P}$ shifts for the isomers of $\mathbf{2 e}$, the value for the $c i s$-isomer would be expected to be close to that for 2c, as it has a similar average CPC bond angle; the two shifts have therefore been assigned on this basis.

The ${ }^{13} \mathrm{C}$ NMR spectra obtained for the bicyclic[n.m.0]diphosphines display either simple triplets or singlets for all the carbon resonances. For this reason, only N_{PC}, the sum of the two separate coupling constants (J_{PC} and $J_{\mathrm{P}^{\prime} \mathrm{C}}$), can be measured and this yields no information about the absolute magnitudes of the PC couplings. The values of N_{PC} for the range of bicyclic[n.m.0]diphosphines are presented in Table 4.

Photoelectron spectra. The photoelectron spectra (PES) of 2a-c were recorded (Fig. 3) for comparison with the PES of the corresponding hydrazines, which have been thoroughly studied. ${ }^{23}$ In the hydrazine spectra, two ionisation bands were

Fig. $3 \mathrm{He}(\mathrm{I})$ photoelectron spectra of (a) 1,5-diphosphabicyclo[3.3.0]octane 2a, (b) 1,6-diphosphabicyclo[4.3.0]nonane 2b and (c) 1,6diphosphabicyclo[4.4.0]decane 2c
observed in the region corresponding to the loss of a lone pair electron, and a simple relationship between the degree of mixing and the lone pair torsion angle (θ) was observed. The band separation was greatest when θ was close to 0° and 180°, and

Fig. 4 He (I) photoelectron spectra of (a) 1,5-dimethyl-1,5-diphosphacyclooctane $\mathbf{4 a}$ and (b) 1,6-dimethyl-1,6-diphosphacyclodecane $\mathbf{4 f}$
smallest when θ was close to 90°. In the diphosphines $\mathbf{2 a - c}$ however, only one band was observed for the lone pair ionisations, which suggests insignificant mixing of the two lone pair orbitals. This probably reflects the greater s-orbital character and more localised nature of phosphorus lone pairs compared to those of nitrogen. Table 4 lists the lone pair ionisation energies that were obtained and the average bond angle $\left(\mathrm{CPX}_{\mathrm{av}}\right)$ at phosphorus (from PM3 calculations). As the bond angles are increased the ionisation potential decreases. The flattening of the phosphorus nuclei will increase the p-orbital character of the lone pair, causing a decrease in the ionisation energy. Of course, ionisation energies tend to decrease as the carbon skeleton gets larger anyway.

The properties of $\boldsymbol{c i s}$-1, n-disubstituted-1, n-diphosphacycloalkanes

X-Ray crystal structural determinations for $\mathbf{4 a}$ and $\mathbf{4 f}$ have been published in our preliminary communication. ${ }^{8}$ All attempts to induce crystallisation of cis-1,6-dimethyl-1,6-diphosphacyclononane 4 e failed, so the compound was converted to its disulfide by reaction with elemental sulfur in refluxing benzene and a crystal suitable for X-ray crystallography was grown by slow diffusion of diethyl ether into a saturated solution in dichloromethane. The X-ray data clearly showed that the disulfide adopts a cis-conformation, as expected, but was not of sufficient quality to obtain detailed structural information.
NMR Spectra. The ${ }^{31} \mathrm{P}$ NMR shifts for $\mathbf{4 a}, \mathbf{4 e}$ and $\mathbf{4 f}$ are $-39.63,-39.77$ and -37.32 respectively, and are all shifted upfield from related acyclic phosphines (cf. $\delta_{\mathrm{P}}-34.0$ for diethylmethylphosphine). ${ }^{24}$ The upfield shifts can be attributed to a flattening of the phosphorus atoms, caused by the conformational constraints imposed by the medium-rings. Direct evidence for a significant transannular interaction in cis-1,5-
dimethyl-1,5-diphosphacyclooctane 4 a comes from examination of its ${ }^{1} \mathrm{H}$ NMR spectrum. The methyl groups are virtual coupled triplets, suggesting a significant $\mathrm{P} \cdots \mathrm{P}$ coupling. The appearance of a triplet suggests that $J_{\mathrm{PP}} \gg \mathrm{L}_{\mathrm{PH}}\left(=J_{\mathrm{PH}} J_{\mathrm{P}^{\prime} \mathrm{H}}\right)$. This is confirmed by the spectra for the unsymmetrical systems $\mathbf{4 b}$ and $\mathbf{4 c}$, where J_{PP} values are 36 and 56 Hz respectively. The ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 a}$ is deceptively simple, with all the resonances appearing as simple triplets. In this case $J_{\mathrm{PP}} \gg$ $\mathrm{L}_{\mathrm{PC}}\left(=J_{\mathrm{PC}}-J_{\mathrm{P}^{\prime} \mathrm{C}}\right)$ and only N_{PC} can be measured (12 Hz for the α-carbons, significantly less than in the compounds containing a P-P bond). The ${ }^{13} \mathrm{C}$ NMR spectrum of the trans-isomer of $\mathbf{4 a}$ suggests that in this case $J_{\mathrm{PP}} \ll \mathrm{L}_{\mathrm{PC}}$ suggesting a much larger $\mathrm{P} \cdots \mathrm{P}$ distance. The ${ }^{13} \mathrm{C}$ NMR spectrum of 1,6 -dimethyl-1,6diphosphacyclononane 4 e displays 5 - and 6 -line signals for all but one of the carbon resonances, and a value of N_{PC} of about 10 Hz was obtained from simulation. The disulfide of $4 \mathbf{e}$ shows only simple doublets and triplets, suggesting a further decrease in the $\mathrm{P} \cdots \mathrm{P}$ coupling compared with 4 e . The ${ }^{13} \mathrm{C}$ NMR of the ten-membered ring diphosphine $\mathbf{4 f}$ is simple; all the α-carbons are doublets, and the β-carbons doublets of doublets. This suggests the $\mathrm{P} \cdots \mathrm{P}$ distance ($4.97 \AA$) is too great for a significant through-space $\mathrm{P} \cdots \mathrm{P}$ coupling.
Photoelectron spectra. The PE spectrum of cis-1,5-dimethyl-1,5-diphosphaoctane $\mathbf{4 a}$ shows two overlapping bands at 8.5 and 8.8 eV , while that of cis-1,6-dimethyl-1,6-diphosphadecane $4 f$ shows one band at 8.0 eV (see Fig. 4). We assign the band(s) below 9 eV to ionisation events from the lone pairs at phosphorus. This assignment is based on the comparison with the PE spectrum of trimethylphosphine which shows a similar first ionisation energy. ${ }^{25}$ We ascribe the close proximity of the first two bands in the PE spectrum of $\mathbf{4 a}$ and the coincidence in the case of $\mathbf{4 f}$ to the high s character of the lone pair and a small spatial overlap between them. Unlike 1,5-diphosphabicyclo[3.3.3]undecane, discussed in the accompanying paper, ${ }^{26}$ there is no evidence of through-bond or through-space coupling in these cases.

Conclusions

We have described a stereoselective route to cis-1,n-disubstituted-1, n-diphosphacycloalkanes $\mathbf{4}$ which gives access to compounds with a variety of ring sizes. The route is flexible and should permit a range of substituents to be introduced on the phosphorus atoms. Although only compounds with simple $\left(\mathrm{CH}_{2}\right)_{n}$ bridges between the phosphorus atoms have been made so far, incorporation of more elaborate bridges, including chiral structures should be possible. The structures of $\mathbf{4 a}$ and $\mathbf{4 f}$ show that the distance apart of the phosphorus atoms and the orientation of their lone pairs can be varied quite substantially. All this augurs well for the potential of these compounds as ligands, and we are currently examining the preparation of metal complexes of these diphosphines.

Experimental

General procedures

Solvents and reagents used in this work were purified according to standard literature techniques ${ }^{27}$ and stored under nitrogen. Solvents were freshly distilled prior to use under an inert atmosphere and dispensed using gas tight syringes. Commercially available reagent solutions were used at the molarity stated and were regularly titrated. Due to the nature of this work, the majority of the reactions and work-ups were carried out under an oxygen- and moisture-free environment using Schlenk tube and related techniques. The highly pyrophoric primary phosphines required special attention and their manipulation was carried out in a fume hood fitted with a high grade filter specifically designed for the removal of arsines and related compounds. Melting points were obtained on a Reichert apparatus, using a thermocouple and a digital readout, and are
corrected. Elemental analyses were performed by the staff of the micro-analytical department of the School of Chemistry, University of Bristol. Electron Impact, Chemical Ionisation and Fast Atom Bombardment mass spectra were recorded by Dr K. MacNeil of the mass spectrometry service at the School of Chemistry, University of Bristol. The mass spectra of many of the phosphines contained peaks relating to the mono- and di-oxides-these are noted in the relevant section. NMR spectra were recorded on a JEOL GX400 machine which was operated at 399.8 MHz for ${ }^{1} \mathrm{H}$ spectra, 161.8 MHz for ${ }^{31} \mathrm{P}$ spectra and 100.5 MHz for ${ }^{13} \mathrm{C}$ spectra. The solvent used is stated in the relevant section. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra were referenced using either the residual non-deuterated solvent or tetramethylsilane, and ${ }^{31} \mathrm{P}$ spectra were externally referenced to 80% phosphoric acid. J Values are given in Hz .

1,n+2-Diphosphabicyclo[n.m.0]alkanes and precursors

1,3-Bis(diethoxyphosphinyl)propane. Following the literature method, ${ }^{28} 1,3$-dibromopropane ($80.8 \mathrm{~g}, 0.40 \mathrm{~mol}$) and triethyl phosphite $(166 \mathrm{~g}, 1.0 \mathrm{~mol})$ were stirred and heated to $160-$ $170^{\circ} \mathrm{C}$ at atmospheric pressure. The reaction mixture was heated for approximately three hours during which time bromoethane distilled from the reaction vessel. The mixture was then allowed to cool and volatiles were removed in vacuo. The product was vacuum distilled (0.1 Torr, $160-162{ }^{\circ} \mathrm{C}$, lit., ${ }^{28}$ 1 Torr, $178-180^{\circ} \mathrm{C}$) to give a colourless oil ($88.6 \mathrm{~g}, 70 \%$); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.01\left(12 \mathrm{H}, \mathrm{t},{ }^{3} J_{\mathrm{HH}} 7, \mathrm{C} H_{3}\right), 1.64(6 \mathrm{H}, \mathrm{m}), 3.77(8 \mathrm{H}$, $\left.\mathrm{q},{ }^{3} J_{\mathrm{HH}} 7, \mathrm{CH}_{2} \mathrm{O}\right) ; \delta_{\mathrm{C}} 15.55\left(2 \mathrm{C}, \mathrm{t},{ }^{2} J_{\mathrm{PC}} 5, \mathrm{C}-2\right), 15.78(4 \mathrm{C}, \mathrm{s}$, $\left.\mathrm{CH}_{3}\right), 25.46\left(2 \mathrm{C}, \mathrm{dd},{ }^{1} J_{\mathrm{PC}} 140,{ }^{3} J_{\mathrm{PC}} 15, \mathrm{C}-1, \mathrm{C}-3\right), 60.85(4 \mathrm{C}, \mathrm{s}$, $\left.\mathrm{CH}_{2} \mathrm{O}\right) ; \delta_{\mathrm{P}} 30.20 ; m / z(\mathrm{EI}) 316\left(\mathrm{M}^{+}, 0.25 \%\right), 179\left\{[\mathrm{M}+1]^{+}-\right.$ $\left.(\mathrm{EtO})_{2} \mathrm{P}(\mathrm{O}), 100\right\}$.

1,4-Bis(diethoxyphosphinyl)butane. The procedure above was employed, using 1,4-dibromobutane ($86 \mathrm{~g}, 0.40 \mathrm{~mol}$) and triethyl phosphite $(156 \mathrm{~g}, 0.94 \mathrm{~mol})$. The product was distilled (0.1 Torr, $178-180^{\circ} \mathrm{C}$, lit., ${ }^{28} 0.1$ Torr, $171{ }^{\circ} \mathrm{C}$) giving a colourless oil $(98 \mathrm{~g}, 74 \%) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.34\left(12 \mathrm{H}, \mathrm{t},{ }^{3} J_{\mathrm{HH}} 7, \mathrm{CH}_{3}\right), 1.73(8 \mathrm{H}$, m), $3.78\left(8 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}\right) ; \delta_{\mathrm{C}} 15.84\left(4 \mathrm{C}, \mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{PC}} 6, \mathrm{CH}_{3}\right), 22.82$ ($2 \mathrm{C}, \mathrm{dd},{ }^{2} J_{\mathrm{PC}} 5,{ }^{3} J_{\mathrm{PC}} 18, \mathrm{C}-2, \mathrm{C}-3$), $24.64\left(2 \mathrm{C}, \mathrm{d},{ }^{1} J_{\mathrm{PC}} 142, \mathrm{C}-1\right.$, C-4), $60.72\left(4 \mathrm{C}, \mathrm{d},{ }^{2} J_{\mathrm{PC}} 8, \mathrm{CH}_{2} \mathrm{O}\right) ; \delta_{\mathrm{P}} 31.14 ; m / z(\mathrm{CI}) 331$ $\left([\mathrm{M}+1]^{+}, 100 \%\right), 285\left([\mathrm{M}+1]^{+}-\mathrm{EtOH}, 16\right), 193\left\{[\mathrm{M}+1]^{+}-\right.$ $\left.(\mathrm{EtO})_{2} \mathrm{P}(\mathrm{O}) \mathrm{H}, 14\right\}$.

1,5-Bis(diethoxyphosphinyl)pentane. The previous method was followed, using 1,5-dibromopentane ($33.8 \mathrm{~g}, 0.15 \mathrm{~mol}$) and triethyl phosphite ($73.2 \mathrm{~g}, 0.44 \mathrm{~mol}$). Distillation (0.1 Torr, 184 $186^{\circ} \mathrm{C}$) yielded a colourless oil ($39 \mathrm{~g}, 76 \%$) [Found (EI): M^{+}, 344.1512. $\mathrm{C}_{13} \mathrm{H}_{30} \mathrm{O}_{6} \mathrm{P}_{2}$ requires 344.1518]; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.32$ $\left(12 \mathrm{H}, \mathrm{t},{ }^{3} J_{\mathrm{HH}} 7, \mathrm{C} H_{3}\right), 1.4-1.8(10 \mathrm{H}, \mathrm{m}), 4.07\left(8 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}\right)$; $\delta_{\mathrm{C}} 16.49\left(4 \mathrm{C}, \mathrm{d},{ }^{3} J_{\mathrm{PC}} 6, C \mathrm{H}_{3}\right), 22.05\left(2 \mathrm{C}, \mathrm{dd},{ }^{2} J_{\mathrm{PC}} 5,{ }^{4} J_{\mathrm{PC}} 1, \mathrm{C}-2\right.$, C-4), 25.46 ($2 \mathrm{C}, \mathrm{d},{ }^{1} J_{\mathrm{PC}} 141, \mathrm{C}-1, \mathrm{C}-5$), 31.41 ($1 \mathrm{C}, \mathrm{t},{ }^{3} J_{\mathrm{PC}} 16$, $\mathrm{C}-3), 60.72\left(4 \mathrm{C}, \mathrm{d},{ }^{2} J_{\mathrm{PC}} 6, C \mathrm{H}_{2} \mathrm{O}\right) ; \delta_{\mathrm{P}} 33.42 ; m / z(\mathrm{EI}) 344\left(\mathrm{M}^{+}\right.$, $2 \%), 207\left[\mathrm{M}^{+}-(\mathrm{EtO})_{2} \mathrm{P}(\mathrm{O}), 98\right], 193\left[\mathrm{M}^{+}-(\mathrm{EtO})_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2}\right.$, 100].

1,3-Diphosphinopropane 1a. Following the literature procedure, ${ }^{29}$ a solution of 1,3-bis(diethoxyphosphinyl)propane $(129 \mathrm{~g}, 0.41 \mathrm{~mol})$ in $\mathrm{Et}_{2} \mathrm{O}\left(100 \mathrm{~cm}^{3}\right)$ was added dropwise to a suspension of $\mathrm{LiAlH}_{4}(50 \mathrm{~g}, 1.32 \mathrm{~mol})$ in $\mathrm{Et}_{2} \mathrm{O}\left(1500 \mathrm{~cm}^{3}\right)$, cooled to $0^{\circ} \mathrm{C}$. After warming to room temperature the reaction was allowed to stir for three days. It was then cooled again in iced water and hydrolysed by careful addition of $\mathrm{HCl}(5 \mathrm{~mol}$ $\mathrm{dm}^{-3}, 600 \mathrm{~cm}^{3}$). The clear ethereal layer was transferred by Teflon tubing to a flask containing anhydrous MgSO_{4}, to dry the organic phase. The aqueous phase was washed with $\mathrm{Et}_{2} \mathrm{O}$ $\left(100 \mathrm{~cm}^{3}\right)$ and this was combined with the rest of the ethereal layer. A portion of this solution was transferred into a $100 \mathrm{~cm}^{3}$ flask set up for distillation. After removal of the bulk of the solvent a further portion of the solution was added. This procedure was repeated until all the solution had been transferred. The remaining solvent was removed and after a forerun of ethanol the product was distilled (760 Torr, $145-146{ }^{\circ} \mathrm{C}$, lit., ${ }^{29}$ 725 Torr, $129-131^{\circ} \mathrm{C}$). This yielded a colourless, pyrophoric
liquid with an obnoxious odour $(27.4 \mathrm{~g}, 65 \%)$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.54$ $\left(4 \mathrm{H}, \mathrm{br}, 1-\mathrm{CH}_{2}, 3-\mathrm{CH}_{2}\right), 1.71\left(2 \mathrm{H}, \mathrm{br}, 2-\mathrm{CH}_{2}\right), 2.65\left(4 \mathrm{H}, \mathrm{d},{ }^{1} J_{\mathrm{PH}}\right.$ $\left.194, \mathrm{P} H_{2}\right) ; \delta_{\mathrm{C}} 13.30\left(2 \mathrm{C}, \mathrm{d},{ }^{1} J_{\mathrm{PC}} 7, \mathrm{C}-1, \mathrm{C}-3\right), 33.65$ ($1 \mathrm{C}, \mathrm{s}, \mathrm{C}-2$); $\delta_{\mathrm{P}}-138.48\left(\mathrm{t},{ }^{1} J_{\mathrm{PH}}\right.$ 194). During the distillation care was taken to prevent leakage through any of the joints, as this leads to spontaneous combustion of the product. Due to the nature of the product, all glassware was soaked in aqueous sodium hypochlorite for at least a week before removal from the fume hood.

1,4-Diphosphinobutane 1b. A solution of 1,4-bis(diethoxyphosphinyl)butane ($98 \mathrm{~g}, 0.30 \mathrm{~mol}$) in $\mathrm{Et}_{2} \mathrm{O}\left(100 \mathrm{~cm}^{3}\right)$ was added to a suspension of $\mathrm{LiAlH}_{4}(36 \mathrm{~g}, 0.95 \mathrm{~mol})$ stirred in $\mathrm{Et}_{2} \mathrm{O}\left(1000 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$. The procedure and work-up were as for the previous reaction. Distillation (760 Torr, $170-172^{\circ} \mathrm{C}$, lit., ${ }^{29}$ $13 \mathrm{mbar}, 64.5^{\circ} \mathrm{C}$) gave a clear foul-smelling, pyrophoric liquid $(11.6 \mathrm{~g}, 62 \%) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.49\left(4 \mathrm{H}, \mathrm{m}, 1-\mathrm{CH}_{2}, 4-\mathrm{CH}_{2}\right), 1.55$ ($\left.4 \mathrm{H}, \mathrm{m}, 2-\mathrm{CH}_{2}, 3-\mathrm{CH}_{2}\right), 2.66\left(4 \mathrm{H}, \mathrm{d},{ }^{1} J_{\mathrm{PH}} 195, \mathrm{P} H_{2}\right) ; \delta_{\mathrm{C}} 13.31$ ($2 \mathrm{C}, \mathrm{d},{ }^{1} J_{\mathrm{PC}} 8, \mathrm{C}-1, \mathrm{C}-4$), 33.66 (2 C, s, C-2, C-3); $\delta_{\mathrm{P}}-137.48$ (t, ${ }^{1} J_{\mathrm{PH}}$ 195).

1,5-Diphosphinopentane 1c. A solution of 1,5-bis(diethoxyphosphinyl)pentane $(39 \mathrm{~g}, 0.11 \mathrm{~mol})$ in $\mathrm{Et}_{2} \mathrm{O}\left(50 \mathrm{~cm}^{3}\right)$ was added to a suspension of $\mathrm{LiAlH}_{4}(15 \mathrm{~g}, 0.39 \mathrm{~mol})$ stirred in $\mathrm{Et}_{2} \mathrm{O}(450$ cm^{3}) at $0{ }^{\circ} \mathrm{C}$. The procedure and work-up were as previously described. Distillation (760 Torr, $190-192^{\circ} \mathrm{C}$) gave a clear pyrophoric liquid with an obnoxious odour $(8.3 \mathrm{~g}, 55 \%) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ $1.51(10 \mathrm{H}, \mathrm{m}), 2.69\left(4 \mathrm{H}, \mathrm{d},{ }^{1} J_{\mathrm{PH}} 192, \mathrm{P} H_{2}\right) ; \delta_{\mathrm{C}} 13.68(2 \mathrm{C}, \mathrm{d}$, $\left.{ }^{1} J_{\mathrm{PC}} 9, \mathrm{C}-1, \mathrm{C}-5\right), 32.42$ (1 C, s, C-3), 32.58 (2 C, s, C-2, C-4); δ_{P} $-137.25\left(\mathrm{t},{ }^{1} J_{\mathrm{PH}}\right.$ 192). Due to the unpleasant nature of this compound further analysis was not performed.
cis-1,5-Diphosphabicyclo[3.3.0]octane 2a. Based on the literature method, ${ }^{17}$ a solution of 1,3-diphosphinopropane $(6.9 \mathrm{~g}$, $64 \mathrm{mmol})$ in THF $\left(70 \mathrm{~cm}^{3}\right)$, cooled to $-78^{\circ} \mathrm{C}$, was treated with a solution of n-butyllithium in hexanes $\left(2.5 \mathrm{~mol} \mathrm{dm}{ }^{-3}, 25.5 \mathrm{~cm}^{3}\right.$, 64 mmol). The reaction mixture was slowly warmed to room temperature, during which time it began to evolve hydrogen. After four hours of stirring at room temperature a golden solution remained. This was slowly transferred, over two hours, through narrow bore Teflon tubing, to a flask containing a stirred solution of 1-bromo-3-chloropropane ($10.1 \mathrm{~g}, 64 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}\left(100 \mathrm{~cm}^{3}\right)$, cooled to $-78^{\circ} \mathrm{C}$. After warming to room temperature the resulting colourless solution was treated with a solution of n-butyllithium in hexanes $\left(2.5 \mathrm{~mol} \mathrm{dm}{ }^{-3}, 25.5 \mathrm{~cm}^{3}\right.$, 64 mmol) which caused gentle refluxing of the solvent. When the addition was complete all volatiles were removed by distillation (760 Torr) to leave a white solid residue. The product was distilled from this residue under high vacuum (0.1 Torr, $66-$ $68{ }^{\circ} \mathrm{C}$, lit., ${ }^{17} 0.1$ Torr, $60-63{ }^{\circ} \mathrm{C}$) to give a clear liquid (3.8 g , $40 \%) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.4-1.7(10 \mathrm{H}, \mathrm{m}), 1.91(2 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}} 30.81(4 \mathrm{C}$, $\left.\mathrm{t}, \mathrm{N}_{\mathrm{PC}} 9, \mathrm{C}-2, \mathrm{C}-4, \mathrm{C}-6, \mathrm{C}-8\right), 31.15$ (2 C, t, ${ }^{2} J_{\mathrm{PC}} 15, \mathrm{C}-3, \mathrm{C}-7$); δ_{P} -27.81 . Addition of one equivalent of triflic acid to a $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ solution of 2a gave a solution containing 1-phosphonia-5phosphabicyclo[3.3.0]octane trifluoromethanesulfonate, with slow proton exchange between the phsophorus atoms: $\delta_{\mathrm{P}}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2},-70{ }^{\circ} \mathrm{C}\right) 47.08\left(\mathrm{dd},{ }^{1} J_{\mathrm{PP}} 241,{ }^{1} J_{\mathrm{PH}} 539, \mathrm{P}-1\right),-53.90$ (d, ${ }^{1} J_{\mathrm{PP}} 241, \mathrm{P}-6$).
cis-1,6-Diphosphabicyclo[4.3.0]nonane 2b. A stirred solution of 1,4-diphosphinobutane ($5.1 \mathrm{~g}, 42 \mathrm{mmol}$) in THF $\left(220 \mathrm{~cm}^{3}\right)$, cooled to $-78^{\circ} \mathrm{C}$ was treated with a solution of n-butyllithium in hexanes ($2.5 \mathrm{~mol} \mathrm{dm}{ }^{-3}, 17 \mathrm{~cm}^{3}, 42 \mathrm{mmol}$). The reaction mixture was slowly warmed to room temperature, during which time gas began to evolve. After two hours of stirring at room temperature a golden solution remained. This was slowly transferred, over two hours, through narrow bore Teflon tubing to a flask containing 1-bromo-3-chloropropane ($6.6 \mathrm{~g}, 42 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}\left(50 \mathrm{~cm}^{3}\right)$, cooled to $-78^{\circ} \mathrm{C}$. After warming to room temperature the resulting clear colourless solution was treated with a solution of n-butyllithium in hexanes $\left(2.5 \mathrm{~mol} \mathrm{dm}{ }^{-3}, 17 \mathrm{~cm}^{3}\right.$, $42 \mathrm{mmol})$. The work-up was as described for the previous reaction, vacuum distillation (0.1 Torr, $80-85^{\circ} \mathrm{C}$) gave a clear liquid ($2.4 \mathrm{~g}, 36 \%$) [Found (EI): $\mathrm{M}^{+}, 160.0581 . \mathrm{C}_{7} \mathrm{H}_{14} \mathrm{P}_{2}$ requires $160.0571] ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.4-2.2(14 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}} 19.58\left(2 \mathrm{C}, \mathrm{t}, \mathrm{N}_{\mathrm{PC}}\right.$

25, C-2, C-5), 21.92 (2 C, t, $\left.\mathrm{N}_{\mathrm{PC}} 4, \mathrm{C}-3, \mathrm{C}-4\right)$, 26.48 ($2 \mathrm{C}, \mathrm{t}, \mathrm{N}_{\mathrm{PC}}$ 23, C-7, C-9), 27.28 ($1 \mathrm{C}, \mathrm{t},{ }^{2} J_{\mathrm{PC}} 3, \mathrm{C}-8$); $\delta_{\mathrm{P}}-56.95$. Addition of one equivalent of triflic acid to a $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ solution of $\mathbf{2 b}$ gave a solution containing 1 -phosphonia-6-phosphabicyclo[4.3.0]nonane trifluoromethanesulfonate, with slow proton exchange between the phosphorus atoms: $\delta_{\mathrm{P}}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2},-70^{\circ} \mathrm{C}\right) 4.05(\mathrm{dd}$, $\left.{ }^{1} J_{\mathrm{PP}} 257,{ }^{1} J_{\mathrm{PH}} 505, \mathrm{P}-1\right),-73.04\left(\mathrm{~d},{ }^{1} J_{\mathrm{PP}} 257, \mathrm{P}-6\right)$.
cis-1,6-Diphosphabicyclo[4.3.0]nonane-1,6-disulfide.
1,6-
Diphosphabicyclo[4.3.0]nonane ($32 \mathrm{mg}, 0.20 \mathrm{mmol}$) in benzene $\left(1 \mathrm{~cm}^{3}\right)$ was treated with sulfur ($30 \mathrm{mg}, 0.12 \mathrm{mmol}$) and heated at reflux for one hour. The solvent was removed in vacuo to leave a yellow residue which was extracted with $\mathrm{CH}_{3} \mathrm{CN}(2 \times 2$ cm^{3}) and filtered to remove the excess sulfur. The solvent was removed to leave an off-white solid, in quantitative yield, which was recrystallised from acetonitrile and $\mathrm{Et}_{2} \mathrm{O} \mathrm{mp} 140-145^{\circ} \mathrm{C}$ (Found: C, 37.6; H, 6.6. $\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{P}_{2} \mathrm{~S}_{2}$ requires C, $37.5 ; \mathrm{H}, 6.3 \%$); $\delta_{\mathrm{H}}\left(\mathrm{CD}_{3} \mathrm{CN}\right) 1.7-2.5(14 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}} 20.51(1 \mathrm{C}, \mathrm{s}, \mathrm{C}-6), 22.31(2 \mathrm{C}$, $\mathrm{s}, \mathrm{C}-2, \mathrm{C}-3$), 33.89 ($2 \mathrm{C}, \mathrm{t}, \mathrm{N}_{\mathrm{PC}} 44, \mathrm{C}-1, \mathrm{C}-4$), 34.11 ($2 \mathrm{C}, \mathrm{t}, \mathrm{N}_{\mathrm{PC}}$ 59, C-5, C-7); $\delta_{\mathrm{P}} 37.20 ; \mathrm{m} / \mathrm{z}(\mathrm{EI}) 224$ (M ${ }^{+}, 100 \%$), 160 (30). Diffusion tank recrystallisation, from acetonitrile and $\mathrm{Et}_{2} \mathrm{O}$, gave colourless crystals suitable for X-ray analysis.
cis-1,6-Diphosphabicyclo[4.4.0]decane 2c. A stirred solution of 1,4-diphosphinobutane ($4.7 \mathrm{~g}, 39 \mathrm{mmol}$) in THF $\left(200 \mathrm{~cm}^{3}\right)$ at $-78^{\circ} \mathrm{C}$ was treated with a solution of n-butyllithium in hexanes ($2.5 \mathrm{~mol} \mathrm{dm}^{-3}, 15.5 \mathrm{~cm}^{3}, 39 \mathrm{mmol}$). The solution was warmed to room temperature and stirred for 24 hours. The resulting pale yellow solution, which contained a fine white precipitate, was then slowly transferred, over two hours, through Teflon tubing into a flask containing 1-bromo-4-chlorobutane $(6.6 \mathrm{~g}$, $39 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}\left(80 \mathrm{~cm}^{3}\right)$ cooled to $-78^{\circ} \mathrm{C}$. After warming to room temperature a clear solution remained. This was treated with a solution of n-butyllithium in hexanes $\left(2.5 \mathrm{~mol} \mathrm{dm}^{-3}, 15.5\right.$ $\mathrm{cm}^{3}, 39 \mathrm{mmol}$) to leave a clear solution with an insoluble white precipitate. The bulk of the solvent was then removed by distillation (760 Torr) and the remainder under high vacuum to leave a white solid residue. A sublimation apparatus, fitted with a male joint, was inserted into the flask and the product was sublimed (1 Torr, $150^{\circ} \mathrm{C}$, two hours). This furnished a waxy white solid ($4.4 \mathrm{~g}, 65 \%$) mp $43-45^{\circ} \mathrm{C}$ (Found: C, 55.0; H, 9.35. $\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{P}_{2}$ requires C, $\left.55.2 ; \mathrm{H}, 9.3 \%\right) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.64(8 \mathrm{H}, \mathrm{m})$, $1.85(4 \mathrm{H}, \mathrm{m}), 2.09(4 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}} 18.32(4 \mathrm{C}, \mathrm{br}, \mathrm{C}-2, \mathrm{C}-5, \mathrm{C}-7, \mathrm{C}-$ 10), 23.11 (4 C, br, C-3, C-4, C-8, C-9); $\delta_{\mathrm{C}}\left(\left[{ }^{2} \mathrm{H}_{8}\right]\right.$ toluene, $\left.90^{\circ} \mathrm{C}\right)$ 19.52 ($4 \mathrm{C}, \mathrm{t}, \mathrm{N}_{\mathrm{PC}} 19, \mathrm{C}-2, \mathrm{C}-5, \mathrm{C}-7, \mathrm{C}-10$), 24.48 ($4 \mathrm{C}, \mathrm{br}, \mathrm{C}-3$, $\mathrm{C}-4, \mathrm{C}-8, \mathrm{C}-9) ; \delta_{\mathrm{C}}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2},-80^{\circ} \mathrm{C}\right) 13.56\left(2 \mathrm{C}, \mathrm{t}, \mathrm{N}_{\mathrm{PC}} 19\right.$, axial$\left.C_{H_{2}} \mathrm{P}\right), 20.07(2 \mathrm{C}, \mathrm{s}), 20.46\left(2 \mathrm{C}, \mathrm{t}, \mathrm{N}_{\mathrm{PC}}\right.$ 14, equatorial- $\left.\mathrm{CH}_{2} \mathrm{P}\right)$, 24.44 (2 C); $\delta_{\mathrm{P}}-77.47 ; \mathrm{m} / \mathrm{z}(\mathrm{EI}) 174\left(\mathrm{M}^{+}, 55 \%\right), 120$ (44). A small sample of the title compound was sealed in an evacuated Schlenk tube, the end of which was immersed in an oil bath maintained at $40^{\circ} \mathrm{C}$. The diphosphine slowly sublimed to the top of the tube to give colourless crystals, which were suitable for X-ray structural analysis. Addition of one equivalent of triflic acid to a $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ solution of 2c gave a solution containing 1-phosphonia-6-phosphabicyclo[4.3.0]nonane trifluoromethanesulfonate, with slow proton exchange between the phsophorus atoms: $\delta_{\mathrm{P}}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2},-60^{\circ} \mathrm{C}\right)-29.07\left(\mathrm{dd},{ }^{1} J_{\mathrm{PP}} 253\right.$, $\left.{ }^{1} J_{\mathrm{PH}} 491, \mathrm{P}-1\right),-85.13$ (d, $\left.{ }^{1} J_{\mathrm{PP}} 253, \mathrm{P}-6\right)$.
cis-1,6-Diphosphabicyclo[4.4.0]decane-1,6-disulfide. Using a similar procedure to that described above, reaction of a solution of 1,6 -diphosphabicyclo[4.4.0]decane ($80 \mathrm{mg}, 0.34 \mathrm{mmol}$) in benzene with sulfur ($62 \mathrm{mg}, 0.24 \mathrm{mmol}$) gave a white solid mp $150-155^{\circ} \mathrm{C}$ (Found: C, $40.5 ; \mathrm{H}, 7.0 . \mathrm{C}_{8} \mathrm{H}_{16} \mathrm{P}_{2} \mathrm{~S}_{2}$ requires C, 40.3 ; $\mathrm{H}, 6.8 \%) ; \delta_{\mathrm{H}}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) 1.85(4 \mathrm{H}, \mathrm{m}), 2.0-2.4(12 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}} 22.38$ (4 C, C-2, C-3, C-6, C-7), 30.37 (4 C, t, N ${ }_{\text {PC }} 42$, C-1, C-4, C-5, $\mathrm{C}-8) ; \delta_{\mathrm{C}}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2},-85^{\circ} \mathrm{C}\right) 19.17(2 \mathrm{C}), 23.20(2 \mathrm{C}), 26.97(2 \mathrm{C}, \mathrm{t}$, $\mathrm{N}_{\mathrm{PC}} 39$), 30.17 (2 C, $\mathrm{t}, \mathrm{N}_{\mathrm{PC}} 44$); $\delta_{\mathrm{P}} 28.78 ; \mathrm{m} / \mathrm{z}$ (EI) 238 (${ }^{+}$, 100%), 205 (74), 173 (15). Diffusion tank recrystallisation, from acetonitrile and $\mathrm{Et}_{2} \mathrm{O}$, gave colourless crystals suitable for X-ray analysis.
cis-1,7-Diphosphabicyclo[5.3.0]decane 2d. A solution of 1,3diphosphinopropane ($1.45 \mathrm{~g}, 13.4 \mathrm{mmol}$) in THF $\left(20 \mathrm{~cm}^{3}\right)$ was
cooled to $-78^{\circ} \mathrm{C}$ and treated with a solution of n-butyllithium in hexanes ($2.5 \mathrm{~mol} \mathrm{dm}{ }^{-3}, 5.4 \mathrm{~cm}^{3}, 13.4 \mathrm{mmol}$). After warming to room temperature the reaction was left to stir for four hours. The resulting yellow solution was transferred, over two hours, through narrow bore Teflon tubing into a flask containing a solution of 1-bromo-5-chloropentane ($2.49 \mathrm{~g}, 13.4 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}\left(150 \mathrm{~cm}^{3}\right)$ maintained at $-78^{\circ} \mathrm{C}$. After warming to room temperature the resulting clear solution was treated with a solution of n-butyllithium in hexanes ($2.5 \mathrm{~mol} \mathrm{dm}{ }^{-3}, 5.4 \mathrm{~cm}^{3}, 13.4$ mmol) to give a colourless solution containing a white precipitate. After removal of the volatiles in vacuo the product was distilled (0.1 Torr, $78-81^{\circ} \mathrm{C}$) from the solid residue to yield a clear oil ($0.25 \mathrm{~g}, 11 \%$) [Found (CI): $\mathrm{M}^{+}, 174.0719 . \mathrm{C}_{8} \mathrm{H}_{16} \mathrm{P}_{2}$ requires 174.0727]; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.3-2.0(16 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}} 22.31(2 \mathrm{C}$, $\left.\mathrm{t}, \mathrm{N}_{\mathrm{PC}} 31, \mathrm{C}-2, \mathrm{C}-6\right), 26.03\left(1 \mathrm{C}, \mathrm{t},{ }^{2} J_{\mathrm{PC}} 5, \mathrm{C}-4\right), 27.68\left(1 \mathrm{C}, \mathrm{t},{ }^{2} J_{\mathrm{PC}}\right.$ 11, C-9), 29.12 ($2 \mathrm{C}, \mathrm{t}, \mathrm{N}_{\mathrm{PC}} 23, \mathrm{C}-3, \mathrm{C}-5$), 29.32 ($2 \mathrm{C}, \mathrm{t}, \mathrm{N}_{\mathrm{PC}}$ 27, C-8, C10); $\delta_{\mathrm{P}}-49.36 ; \mathrm{m} / \mathrm{z}(\mathrm{CI}) 175$ ([M + 1] $\left.{ }^{+}, 25 \%\right), 191$ $\left([M+1]^{+}+\mathrm{O}, 74\right), 207\left([\mathrm{M}+1]^{+}+\mathrm{O}_{2}, 100\right)$.

1,7-Diphosphabicyclo[5.4.0]undecane 2e. A stirred solution of 1,4-diphosphinobutane ($198 \mathrm{mg}, 1.62 \mathrm{mmol}$) in THF $\left(10 \mathrm{~cm}^{3}\right)$ at $-78^{\circ} \mathrm{C}$ was treated with a solution of n-butyllithium in hexanes ($2.5 \mathrm{~mol} \mathrm{dm}^{-3}, 0.65 \mathrm{~cm}^{3}, 1.62 \mathrm{mmol}$). After warming to room temperature the reaction was left for two hours, and then slowly transferred through Teflon tubing, over two hours, into a flask containing 1-bromo-5-chloropentane ($301 \mathrm{mg}, 1.62$ $\mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}\left(10 \mathrm{~cm}^{3}\right)$, cooled to $-78^{\circ} \mathrm{C}$. The reaction was warmed to room temperature, and treated with n-butyllithium in hexanes ($2.5 \mathrm{~mol} \mathrm{dm}^{-3}, 0.65 \mathrm{~cm}^{3}, 1.62 \mathrm{mmol}$) to leave a clear solution with a white precipitate. All volatiles were removed under high vacuum to leave a white solid. The title compound was obtained, as a clear oil, by Kügelrohr distillation (0.1 Torr, $130^{\circ} \mathrm{C}$), and was obtained as a mixture of cis- and transisomers ($111 \mathrm{mg}, 36 \%$) [Found (CI): $\mathrm{M}^{+}, 188.0879 . \mathrm{C}_{9} \mathrm{H}_{18} \mathrm{P}_{2}$ requires 188.0884]; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.2-2.3(\mathrm{~m}) ; \delta_{\mathrm{C}}($ cis-isomer) 19.53 ($2 \mathrm{C}, \mathrm{t}, \mathrm{N}_{\mathrm{PC}} 15$), 22.44 ($2 \mathrm{C}, \mathrm{t}, \mathrm{N}_{\mathrm{PC}} 23$), 23.19 ($2 \mathrm{C}, \mathrm{s}$), 23.54 (2 C , $\mathrm{t}, \mathrm{N}_{\mathrm{PC}} 6$), $28.84\left(1 \mathrm{C}, \mathrm{t},{ }^{3} J_{\mathrm{PC}} 5, \mathrm{C}-4\right)$, (trans-isomer) $24.72(2 \mathrm{C}, \mathrm{t}$, $\mathrm{N}_{\mathrm{PC}} 8$), 26.35 ($1 \mathrm{C}, \mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{PC}} 3, \mathrm{C}-3$), 26.82 ($2 \mathrm{C}, \mathrm{s}$), 27.58 (2 C , $\mathrm{t}, \mathrm{N}_{\mathrm{PC}} 10$), 27.77 ($2 \mathrm{C}, \mathrm{s}$); $\delta_{\mathrm{P}}-70.19$ (cis-isomer, 75%), -48.34 (trans-isomer, 25\%); m/z (CI) 189 ([M + 1] ${ }^{+}, 80 \%$), 205 $\left([\mathrm{M}+1]^{+}+\mathrm{O}, 25\right), 221\left([\mathrm{M}+1]^{+}+\mathrm{O}_{2}, 32\right)$. This mixture of phosphines was analysed by GCMS on a Fison MD800 instrument fitted with a SGE BPXS column. The starting temperature was $70^{\circ} \mathrm{C}$ which was ramped at $15^{\circ} \mathrm{C} \mathrm{min}^{-1}$ to a final temperature of $220^{\circ} \mathrm{C}$.

1,3-Bis(1-phospholano)propane. A solution of n-butyllithium in hexanes ($2.1 \mathrm{~mol} \mathrm{dm}^{-3}, 10.1 \mathrm{~cm}^{3}, 21.3 \mathrm{mmol}$) was added to a solution of 1,3-diphosphinopropane ($2.3 \mathrm{~g}, 21 \mathrm{mmol}$) in THF $\left(100 \mathrm{~cm}^{3}\right)$, at $-78^{\circ} \mathrm{C}$, and the reaction stirred at this temperature for a further five minutes. To this mixture, maintained at $-78^{\circ} \mathrm{C}$, was added 1-bromo-4-chlorobutane ($3.65 \mathrm{~g}, 21.3$ $\mathrm{mmol})$ dissolved in $\mathrm{Et}_{2} \mathrm{O}\left(10 \mathrm{~cm}^{3}\right)$. After another five minutes, a second equivalent of n-butyllithium in hexanes was added (2.1 $\mathrm{mol} \mathrm{dm}{ }^{-3}, 10.1 \mathrm{~cm}^{3}, 21.3 \mathrm{mmol}$) followed, after five minutes, by a second portion of 1-bromo-4-chlorobutane (3.65 g) in $\mathrm{Et}_{2} \mathrm{O}$. The reaction flask was warmed to $0^{\circ} \mathrm{C}$ and a further two equivalents of n-butyllithium in hexanes $\left(2.1 \mathrm{~mol} \mathrm{dm}^{-3}, 20.2\right.$ $\mathrm{cm}^{3}, 42.6 \mathrm{mmol}$) was added dropwise, over five minutes. After stirring at room temperature for a further 30 minutes, solvent and volatiles were removed in vacuo (0.1 Torr), and the residue extracted ($2 \times 20 \mathrm{~cm}^{3} \mathrm{Et}_{2} \mathrm{O}$) and filtered through a glass sinter. $\mathrm{Et}_{2} \mathrm{O}$ was removed in vacuo, and the residue vacuum distilled (0.1 Torr, $115-120^{\circ} \mathrm{C}$) to yield a pale yellow oil $(0.54 \mathrm{~g}, 12 \%)$ [Found (EI): M^{+}, 216.1191. $\mathrm{C}_{11} \mathrm{H}_{22} \mathrm{P}_{2}$ requires 216.1197]; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.2-1.8(22 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}} 24.42\left(1 \mathrm{C}, \mathrm{t},{ }^{2} J_{\mathrm{PC}} 16, \mathrm{C}-2\right)$, 26.02 ($4 \mathrm{C}, \mathrm{d},{ }^{1} J_{\mathrm{PC}} 12$, phospholano- $\mathrm{CH}_{2} \mathrm{P}$), $27.91\left(4 \mathrm{C}, \mathrm{d},{ }^{2} J_{\mathrm{PC}}\right.$ 3, phospholano- $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{P}$), 30.78 ($2 \mathrm{C}, \mathrm{dd},{ }^{1} J_{\mathrm{PC}} 16,{ }^{3} J_{\mathrm{PC}} 11$, C$1, \mathrm{C}-3) ; \delta_{\mathrm{P}}-27.48 ; \mathrm{m} / \mathrm{z}(\mathrm{CI}) 216,\left(\mathrm{M}^{+}, 60 \%\right), 160$ (100), 129 (73).

1,3-Bis(1-phospholano)propane-1,3-disulfide. Using a similar procedure to that described above, reaction of a solution of 1,3-bis(1-phospholano)propane ($126 \mathrm{mg}, 0.45 \mathrm{mmol}$) in benzene
with sulfur ($57 \mathrm{mg}, 0.22 \mathrm{mmol}$) gave a white solid which was recrystallised from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{Et}_{2} \mathrm{O} \mathrm{mp} 110-112{ }^{\circ} \mathrm{C}$ [Found (EI): M^{+}, 294.0808. $\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{P}_{2} \mathrm{~S}_{2}$ requires 294.0795; measured, $\mathrm{C}_{11} \mathrm{H}_{22} \mathrm{P}_{2} \mathrm{~S}_{2}$ requires C, 47.1; H, 7.9\%]; $\delta_{\mathrm{H}}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$ 1.3-2.2 (22 $\mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}} 17.48\left(1 \mathrm{C}, \mathrm{t},{ }^{2} J_{\mathrm{PC}} 2, \mathrm{C}-2\right), 25.94\left(4 \mathrm{C}, \mathrm{d},{ }^{2} J_{\mathrm{PC}} 6\right.$, phospholano- $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{P}$), $33.52\left(4 \mathrm{C}, \mathrm{d},{ }^{1} J_{\mathrm{PC}} 52\right.$, phospholano$\mathrm{CH}_{2} \mathrm{P}$), 33.65 (2 C, dd, ${ }^{1} J_{\mathrm{PC}} 45,{ }^{3} \mathrm{~J}_{\mathrm{PC}} 12, \mathrm{C}-1, \mathrm{C}-3$); $\delta_{\mathrm{P}} 62.96 ; \mathrm{m} / \mathrm{z}$ (EI) $280\left(\mathrm{M}^{+}, 81.3 \%\right), 161$ (100), 119 (95).
1,3-Bis(1-phospholano)propane-1,3-dioxide. 1,3-Bis(1-phospholano) propane ($50 \mathrm{mg}, 0.23 \mathrm{mmol}$) dissolved in acetonitrile $\left(1 \mathrm{~cm}^{3}\right)$ was treated with an aqueous solution of $\mathrm{H}_{2} \mathrm{O}_{2}(35 \%, 0.2$ cm^{-3}) and stirred at room temperature for one hour. Solvent and volatiles were removed in vacuo to leave an oily residue. Attempts to recrystallise the residue $\left(\mathrm{CH}_{3} \mathrm{CN}-\mathrm{Et}_{2} \mathrm{O}\right)$ were unsuccessful [Found (EI): $\mathrm{M}^{+}, 248.1111 . \mathrm{C}_{11} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{P}_{2}$ requires 248.1095]; $\delta_{\mathrm{H}}\left(\mathrm{CD}_{3} \mathrm{CN}\right)$ 1.4-2.0 $(22 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}} 16.12\left(1 \mathrm{C}, \mathrm{d},{ }^{1} J_{\mathrm{PC}}\right.$ 3, C-2), $25.02\left(4 \mathrm{C}, \mathrm{d},{ }^{2} J_{\mathrm{PC}} 8\right.$, phospholano- $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{P}$), 27.17 $\left(4 \mathrm{C}, \mathrm{d},{ }^{1} J_{\mathrm{PC}} 65\right.$, phospholano- $\left.\mathrm{CH}_{2} \mathrm{P}\right), 31.39\left(2 \mathrm{C}\right.$, dd, ${ }^{1} J_{\mathrm{PC}} 61$, $\left.{ }^{3} J_{\mathrm{PC}} 12, \mathrm{C}-1, \mathrm{C}-3\right) ; \delta_{\mathrm{P}} 75.92 ; m / z(\mathrm{EI}) 248\left(\mathrm{M}^{+}, 7 \%\right), 145(37), 131$ (100), 118 (42).

1,4-Bis(1-phospholano)butane. Following the procedure and work-up described for preparing 1,3-bis(1-phospholano)propane, a stirred solution of 1,4-diphosphinobutane $(1.09 \mathrm{~g}$, $8.9 \mathrm{mmol})$ in THF $\left(50 \mathrm{~cm}^{3}\right)$ was treated twice, sequentially, with n-butyllithium in hexanes ($2.2 \mathrm{~mol} \mathrm{dm}^{-3}, 4.05 \mathrm{~cm}^{3}, 8.9 \mathrm{mmol}$) then 1-bromo-4-chlorobutane ($1.53 \mathrm{~g}, 8.9 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}$ (10 cm^{3}) at $-78^{\circ} \mathrm{C}$. Double cyclisation was effected on addition of a further two equivalents of n-butyllithium in hexanes (2.2 mol $\left.\mathrm{dm}^{-3}, 8.1 \mathrm{~cm}^{3}, 18 \mathrm{mmol}\right)$ at $0{ }^{\circ} \mathrm{C}$. Vacuum distillation of the residue (0.1 Torr, $110-115^{\circ} \mathrm{C}$) gave an oil $(0.57 \mathrm{~g}, 28 \%)$, which solidified on standing at room temperature to give a waxy solid $\mathrm{mp} 29-30^{\circ} \mathrm{C}$ [Found (EI): M^{+}, 230.1365. $\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{P}_{2}$ requires 230.1353]; $\delta_{\mathrm{H}}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) 1.21(4 \mathrm{H}, \mathrm{m}), 1.39(4 \mathrm{H}, \mathrm{m}), 1.5-1.7(8 \mathrm{H}$, m); $\delta_{\mathrm{C}} 24.92\left(4 \mathrm{C}, \mathrm{d},{ }^{1} J_{\mathrm{PC}} 12\right.$, phospholano- $\mathrm{CH}_{2} \mathrm{P}$), $26.76(4 \mathrm{C}, \mathrm{d}$, ${ }^{2} J_{\mathrm{PC}} 4$, phospholano- $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{P}$), 27.46 (2 C , X part of an $\mathrm{AA}^{\prime} \mathrm{X}$ system, $\mathrm{N}_{\mathrm{PC}} 29, \mathrm{C}-2, \mathrm{C}-3$), 27.70 ($2 \mathrm{C}, \mathrm{d},{ }^{1} J_{\mathrm{PC}} 16, \mathrm{C}-1$, C-4); $\delta_{\mathrm{P}}-26.51 ; \mathrm{m} / \mathrm{z}$ (EI) $230\left(\mathrm{M}^{+}, 33 \%\right), 201$ (26), 174 (86), 143 (100).

1,4-Bis(1-phospholano)butane-1,4-disulfide. Using a similar procedure to that described above, reaction of a solution of 1,4-bis(1-phospholano)butane ($130 \mathrm{mg}, 0.44 \mathrm{mmol}$) in benzene with sulfur ($60 \mathrm{mg}, 0.23 \mathrm{mmol}$) gave a white solid which was recrystallised from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{Et}_{2} \mathrm{O} \mathrm{mp} 115-118^{\circ} \mathrm{C}$ [Found (EI): M^{+}, 294.0808. $\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{P}_{2} \mathrm{~S}_{2}$ requires 294.0795]; $\delta_{\mathrm{H}}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$ $1.7-2.1(24 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}} 24.20\left(2 \mathrm{C}, \mathrm{dd},{ }^{2} J_{\mathrm{PC}} 3,{ }^{3} J_{\mathrm{PC}} 15, \mathrm{C}-2, \mathrm{C}-3\right)$, $26.07\left(4 \mathrm{C}, \mathrm{d},{ }^{2} J_{\mathrm{PC}} 6\right.$, phospholano- $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{P}$), $33.29(2 \mathrm{C}, \mathrm{d}$, $\left.{ }^{1} J_{\mathrm{PC}} 45, \mathrm{C}-1, \mathrm{C}-4\right), 33.46\left(4 \mathrm{C}, \mathrm{d},{ }^{1} J_{\mathrm{PC}} 52\right.$, phospholano- $\left.\mathrm{CH}_{2} \mathrm{P}\right)$; $\delta_{\mathrm{P}} 63.28 ; m / z(\mathrm{EI}) 294\left(\mathrm{M}^{+}, 44 \%\right), 175$ (100).

1,4-Bis(1-phospholano)butane-1,4-dioxide. To a stirred solution of 1,4 -bis(1-phospholano)butane ($55 \mathrm{mg}, 0.24 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ was added an aqueous solution of $\mathrm{H}_{2} \mathrm{O}_{2}$ $\left(35 \%, 0.2 \mathrm{~cm}^{3}\right)$. The mixture was stirred at room temperature for one hour, then the solvent and volatiles were removed in vacuo to leave an oily residue (0.071 g) which solidified on standing. This was recrystallised from acetonitrile and $\mathrm{Et}_{2} \mathrm{O}$ to give colourless crystals, $\mathrm{mp} \quad 115-120^{\circ} \mathrm{C}$ [Found (EI): M^{+}, 262.1228. $\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{P}_{2}$ requires 262.1251]; $\delta_{\mathrm{H}}\left(\mathrm{CD}_{3} \mathrm{CN}\right)$ 1.4-2.1 $(24 \mathrm{H}, \mathrm{m})$; $\delta_{\mathrm{C}} 24.01\left(2 \mathrm{C}, \mathrm{dd},{ }^{2} J_{\mathrm{PC}} 4,{ }^{3} J_{\mathrm{PC}} 13, \mathrm{C}-2, \mathrm{C}-3\right), 25.08$ ($4 \mathrm{C}, \mathrm{d},{ }^{2} J_{\mathrm{PC}} 7$, phospholano- $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{P}$), $27.32\left(4 \mathrm{C}, \mathrm{d},{ }^{1} J_{\mathrm{PC}} 65\right.$, phospholano- $\mathrm{CH}_{2} \mathrm{P}$), 30.25 ($2 \mathrm{C}, \mathrm{d},{ }^{1} \mathrm{~J}_{\mathrm{PC}} 62, \mathrm{C}-1, \mathrm{C}-4$); $\delta_{\mathrm{P}} 74.74$; $\mathrm{m} / \mathrm{z}(\mathrm{EI}) 262\left(\mathrm{M}^{+}, 2.5 \%\right), 233$ (11), 206 (11.1), 159 (100).

Monoalkylated 1,k+2-diphosphabicyclo[k.l.0]alkanes
 1-Methyl-1-phosphonia-5-phosphabicyclo[3.3.0]octane iodide

 3a.I. In accordance with the literature method, ${ }^{17}$ a solution of 1,5-diphosphabicyclo[3.3.0]octane ($458 \mathrm{mg}, 3.14 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}$ $\left(20 \mathrm{~cm}^{3}\right)$ was treated with a two-fold excess of methyl iodide $\left(0.39 \mathrm{~cm}^{3}, 6.3 \mathrm{mmol}\right)$. The reaction mixture was stirred for 20 hours, during which time a thick white precipitate formed. All volatiles were removed in vacuo to leave a white crystalline solidin quantitative yield which was used without further purification, $\mathrm{mp}>300^{\circ} \mathrm{C} ; \delta_{\mathrm{H}}\left(\mathrm{CD}_{3} \mathrm{OD}\right) 2.0-2.5(10 \mathrm{H}, \mathrm{m}), 2.16(3 \mathrm{H}$, $\left.\mathrm{dd},{ }^{2} J_{\mathrm{PH}} 15,{ }^{3} J_{\mathrm{PH}} 4, \mathrm{C} H_{3}\right), 2.5-2.6(2 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}} 6.15\left(1 \mathrm{C}, \mathrm{dd},{ }^{1} J_{\mathrm{PC}}\right.$ 44.2, ${ }^{2} J_{\mathrm{PC}} 13, C \mathrm{H}_{3}$), 27.76-28.10 ($4 \mathrm{C}, 7$ signals, complex multiplet), 28.80 ($2 \mathrm{C}, \mathrm{dd},{ }^{1} J_{\mathrm{PC}} 27.5,{ }^{2} J_{\mathrm{PC}} 6, \mathrm{C}-1, \mathrm{C}-6$); $\delta_{\mathrm{P}}-52.32$ (d, $\left.{ }^{1} J_{\mathrm{PP}} 242, \mathrm{P}-5\right), 77.09\left(\mathrm{~d},{ }^{1} J_{\mathrm{PP}} 242, \mathrm{P}-1\right) ; m / z\left(\mathrm{FAB}^{+}\right) 161\left(\mathrm{M}^{+}-\mathrm{I}\right.$, 100%). Diffusion tank recrystallisation, using a solution of the iodide salt in methanol, with slow diffusion of $\mathrm{Et}_{2} \mathrm{O}$ into the inner tank, gave colourless crystals of sufficient quality for X-ray structural analysis.

1-Methyl-1-phosphonia-5-phosphabicyclo[3.3.0]octane trifluoromethanesulfonate 3a.OTf. 1,5-Diphosphabicyclo[3.3.0]octane ($466 \mathrm{mg}, 3.19 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(20 \mathrm{~cm}^{3}\right)$ was treated with methyl trifluoromethanesulfonate ($0.36 \mathrm{~cm}^{3}, 3.2 \mathrm{mmol}$). After stirring for one hour a clear solution remained from which all volatiles were removed in vacuo to leave a white solid residue. After washing with $\mathrm{Et}_{2} \mathrm{O}\left(2 \times 20 \mathrm{~cm}^{3}\right)$ the solid was dried under high vacuum to give the title compound as a white powder ($960 \mathrm{mg}, 97 \%$). The spectroscopic data is essentially identical to that of 1-methyl-1-phosphonia-5-phosphabicyclo[3.3.0]octane iodide.

1-Methyl-1-phosphonia-6-phosphabicyclo[4.3.0]nonane iodide 3b.I. 1,6-Diphosphabicyclo[4.3.0]nonane ($270 \mathrm{mg}, 1.69 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}\left(10 \mathrm{~cm}^{3}\right)$ was treated with a twofold excess of methyl iodide $\left(0.22 \mathrm{~cm}^{3}, 3.4 \mathrm{mmol}\right)$. After stirring overnight a thick white precipitate had formed. Removal of all volatiles in vacuo furnished the title compound as a white solid in quantitative yield, $\mathrm{mp}>300{ }^{\circ} \mathrm{C}$ (Found: C, 31.6; H, 5.9. $\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{IP}_{2}$ requires C, 31.8; H, 5.7\%); $\delta_{\mathrm{H}}\left(\mathrm{CD}_{3} \mathrm{OD}\right) 1.4-1.8(4 \mathrm{H}, \mathrm{m}), 1.87(3 \mathrm{H}, \mathrm{dd}$, $\left.{ }^{2} J_{\mathrm{PH}} 14,{ }^{3} J_{\mathrm{PH}} 6, \mathrm{CH}_{3}\right), 1.9-2.5(8 \mathrm{H}, \mathrm{m}), 2.6-2.7(2 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{P}}$ $-66.02\left(\mathrm{~d},{ }^{1} J_{\mathrm{PP}} 248, \mathrm{P}-6\right), 35.25\left(\mathrm{~d},{ }^{1} J_{\mathrm{PP}} 248, \mathrm{P}-1\right) ; m / z\left(\mathrm{FAB}^{+}\right)$ $175\left(\mathrm{M}^{+}-\mathrm{I}, 100 \%\right)$. Diffusion tank recrystallisation using methanol and $\mathrm{Et}_{2} \mathrm{O}$ gave colourless crystals which were subjected to an X-ray structural analysis.

1-Methyl-1-phosphonia-6-phosphabicyclo[4.4.0]decane iodide 3c.I. Following the literature procedure, ${ }^{9}, 6$-diphosphabicyclo[4.4.0]decane ($312 \mathrm{mg}, 1.79 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}\left(10 \mathrm{~cm}^{3}\right)$ was treated with two equivalents of methyl iodide ($0.23 \mathrm{~cm}^{3}, 3.6 \mathrm{mmol}$). The general procedure was as for the previous reaction and furnished a white solid in quantitative yield, $\mathrm{mp}>300^{\circ} \mathrm{C}$ (Found: C, 34.2; H, 6.4. $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{IP}_{2}$ requires $\mathrm{C}, 34.2 ; \mathrm{H}, 6.1 \%$); $\delta_{\mathrm{H}}\left(\mathrm{CD}_{3} \mathrm{OD}\right) 1.6-1.8(2 \mathrm{H}, \mathrm{m}), 1.8-2.1(8 \mathrm{H}, \mathrm{m}), 1.94(3 \mathrm{H}$, $\left.\mathrm{dd},{ }^{2} J_{\mathrm{PH}} 14,{ }^{3} J_{\mathrm{PH}} 6, \mathrm{C} H_{3}\right), 2.1-2.3(4 \mathrm{H}, \mathrm{m}), 2.5-2.7(2 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}$ $6.81\left(1 \mathrm{C}, \mathrm{dd},{ }^{1} J_{\mathrm{PC}} 46,{ }^{2} J_{\mathrm{PC}} 12, C \mathrm{H}_{3}\right), 17.65\left(2 \mathrm{C}, \mathrm{d},{ }^{1} J_{\mathrm{PC}} 19, \mathrm{C}-4\right.$, $\mathrm{C}-5), 18.80\left(2 \mathrm{C}, \mathrm{d},{ }^{1} J_{\mathrm{PC}} 36, \mathrm{C}-1, \mathrm{C}-8\right), 21.49\left(2 \mathrm{C}, \mathrm{d},{ }^{2} J_{\mathrm{PC}} 7, \mathrm{C}-2\right.$, C-7), 21.73 ($2 \mathrm{C}, \mathrm{d},{ }^{2} J_{\mathrm{PC}} 4, \mathrm{C}-3, \mathrm{C}-6$); $\delta_{\mathrm{P}}-74.57$ (d, ${ }^{1} J_{\mathrm{PP}} 246$, P-6), $-3.55\left(\mathrm{~d},{ }^{1} J_{\mathrm{PP}} 246, \mathrm{P}-1\right) ; m / z\left(\mathrm{FAB}^{+}\right) 189\left(\mathrm{M}^{+}-\mathrm{I}, 100 \%\right)$. Diffusion tank recrystallisation using methanol and $\mathrm{Et}_{2} \mathrm{O}$ gave crystals suitable for an X-ray structural analysis.

1-Benzyl-1-phosphonia-5-phosphabicyclo[3.3.0]octane bromide 3d.Br. Benzyl bromide ($4.1 \mathrm{~cm}^{3}, 34 \mathrm{mmol}$) was added to a solution of 1,5-diphosphabicyclo[3.3.0]octane ($2.52 \mathrm{~g}, 17.1$ $\mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}\left(50 \mathrm{~cm}^{3}\right)$. After stirring for 20 hours the white precipitate which had formed was filtered off, and washed with $\mathrm{Et}_{2} \mathrm{O}\left(3 \times 50 \mathrm{~cm}^{3}\right)$. The product was obtained as a white solid ($5.06 \mathrm{~g}, 94 \%$) mp 153-155 ${ }^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) 1.9-2.3(8 \mathrm{H}, \mathrm{m}), 2.4-$ $2.7(4 \mathrm{H}, \mathrm{m}), 4.22\left(2 \mathrm{H}, \mathrm{dd},{ }^{2} J_{\mathrm{PH}} 16,{ }^{3} J_{\mathrm{PH}} 3, \mathrm{C} H_{2} \mathrm{Ph}\right), 7.3-7.4$ $(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.45(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}} 30.61\left(1 \mathrm{C}, \mathrm{d},{ }^{1} J_{\mathrm{PC}} 32\right.$, $\mathrm{CH}_{2} \mathrm{Ph}$), $32.41-32.92$ ($6 \mathrm{C}, 10$ lines complex multiplet), 134.16 ($1 \mathrm{C}, \mathrm{d},{ }^{5} J_{\mathrm{PC}} 3$, para-C), $135.11\left(2 \mathrm{C}, \mathrm{d}, J_{\mathrm{PC}} 3\right.$), $135.69\left(2 \mathrm{C}, \mathrm{d}, J_{\mathrm{PC}}\right.$ 8), 135.99 ($1 \mathrm{C}, \mathrm{d},{ }^{2} J_{\mathrm{PC}} 9$, ipso-C); $\delta_{\mathrm{P}}-54.24$ (d, ${ }^{1} J_{\mathrm{PP}} 250, \mathrm{P}-5$), $86.05\left(\mathrm{~d},{ }^{1} J_{\mathrm{PP}} 250, \mathrm{P}-1\right) ; m / z\left(\mathrm{FAB}^{+}\right) 237\left(\mathrm{M}^{+}-\mathrm{Br}, 100 \%\right)$. The title compound was reacted with a tenfold excess of sodium tetrafluoroborate in order to exchange the counter ion. Recrystallisation from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{Et}_{2} \mathrm{O}$ furnished white crystals, mp 104-106 ${ }^{\circ} \mathrm{C}$ (Found: C, $48.0 ; \mathrm{H}, 6.0 . \mathrm{C}_{13} \mathrm{H}_{19} \mathrm{BF}_{4} \mathrm{P}_{2}$ requires C, 48.2; H, 5.9\%).

1-Benzyl-1-phosphonia-6-phosphabicyclo[4.4.0]decanium

bromide 3e.Br. A solution of 1,6-diphosphabicyclo[4.4.0]decane $(198 \mathrm{mg}, 1.14 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}\left(10 \mathrm{~cm}^{3}\right)$ was treated with two
equivalents of benzyl bromide ($\left.0.27 \mathrm{~cm}^{3}, 2.3 \mathrm{mmol}\right)$. The general procedure was as for the previous reaction and furnished a white solid ($350 \mathrm{mg}, 89 \%$) mp 282-284 ${ }^{\circ} \mathrm{C}$ (Found: C, 52.0 ; H, 6.3. $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{BrP}_{2}$ requires C, $\left.52.2 ; \mathrm{H}, 6.7 \%\right) ; \delta_{\mathrm{H}}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) 1.6-1.8$ $(4 \mathrm{H}, \mathrm{m}), 1.8-2.0(6 \mathrm{H}, \mathrm{m}), 2.0-2.2(2 \mathrm{H}, \mathrm{m}), 2.63(2 \mathrm{H}, \mathrm{m}), 2.90$ $(2 \mathrm{H}, \mathrm{m}), 4.34\left(2 \mathrm{H}, \mathrm{dd},{ }^{2} J_{\mathrm{PH}} 15,{ }^{3} J_{\mathrm{PH}} 6, \mathrm{CH}_{2} \mathrm{Ph}\right), 7.37(3 \mathrm{H}, \mathrm{m}$, $\mathrm{ArH})$, $7.54(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}} 17.91$ ($2 \mathrm{C}, \mathrm{d},{ }^{1} J_{\mathrm{PC}} 33, \mathrm{C}-5, \mathrm{C}-7$), 18.17 ($2 \mathrm{C}, \mathrm{dd},{ }^{1} J_{\mathrm{PC}} 21,{ }^{2} J_{\mathrm{PC}} 4, \mathrm{C}-2, \mathrm{C}-10$), 21.17 ($2 \mathrm{C}, \mathrm{d},{ }^{2} J_{\mathrm{PC}} 8$, C-4, C-8), 21.82 ($2 \mathrm{C}, \mathrm{d},{ }^{2} J_{\mathrm{PC}} 6, \mathrm{C}-3, \mathrm{C}-9$), 29.63 ($1 \mathrm{C}, \mathrm{dd},{ }^{1} J_{\mathrm{PC}}$ $39,{ }^{2} J_{\mathrm{PC}} 9, \mathrm{CH}_{2} \mathrm{Ph}$), 128.83 ($1 \mathrm{C}, \mathrm{d},{ }^{5} J_{\mathrm{PC}} 4$, para-C), 129.40 (1 C , $\mathrm{d},{ }^{2} J_{\mathrm{PC}} 9$, ipso-C), $129.67\left(2 \mathrm{C}, \mathrm{d},{ }^{4} J_{\mathrm{PC}} 3\right.$, meta-C), $130.64(2 \mathrm{C}$, dd, ${ }^{3} J_{\mathrm{PC}} 6,{ }^{4} J_{\mathrm{PC}} 2$, ortho-C); $\delta_{\mathrm{P}}-80.38$ (d, ${ }^{1} J_{\mathrm{PP}} 257, \mathrm{P}-6$), -1.27 (d, $\left.{ }^{1} J_{\mathrm{PP}} 257, \mathrm{P}-1\right) ; m / z\left(\mathrm{FAB}^{+}\right) 265\left(\mathrm{M}^{+}-\mathrm{Br}, 100 \%\right)$

cis-Dialkyldiphosphacycloalkanes

cis-1,5-Dimethyl-1,5-diphosphacyclooctane 4a. A suspension of 1-methyl-1-phosphonia-5-phosphabicyclo[3.3.0]octane trifluoromethanesulfonate ($960 \mathrm{mg}, 3.10 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}\left(20 \mathrm{~cm}^{3}\right)$, cooled to $-78^{\circ} \mathrm{C}$, was treated with an excess of a solution of methyllithium in $\mathrm{Et}_{2} \mathrm{O}\left(1.4 \mathrm{~mol} \mathrm{dm}^{-3}, 4.5 \mathrm{~cm}^{3}, 6.3 \mathrm{mmol}\right)$. The reaction mixture was warmed to room temperature to leave a homogeneous solution which was hydrolysed with water $(0.25$ $\left.\mathrm{cm}^{3}\right)$. The solution was then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and all volatiles were removed in vacuo. The resulting residue was extracted with light petroleum (bp $30-40^{\circ} \mathrm{C}, 2 \times 15 \mathrm{~cm}^{3}$) and filtered through a glass sinter. Removal of all volatiles under high vacuum left a waxy white solid ($420 \mathrm{mg}, 77 \%$); $\delta_{\mathrm{H}}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) 0.87\left(6 \mathrm{H}, \mathrm{t}, \mathrm{N}_{\mathrm{PH}} 4\right.$, $\left.\mathrm{CH}_{3}\right), 1.37(4 \mathrm{H}, \mathrm{m}), 1.62(4 \mathrm{H}, \mathrm{m}), 1.82(2 \mathrm{H}, \mathrm{m}), 2.07(2 \mathrm{H}, \mathrm{m}) ;$ $\delta_{\mathrm{C}} 14.60\left(2 \mathrm{C}, \mathrm{t}, \mathrm{N}_{\mathrm{PC}} 12, \mathrm{CH}_{3}\right), 24.30\left(2 \mathrm{C}, \mathrm{t},{ }^{2} J_{\mathrm{PC}} 14, \mathrm{C}-3, \mathrm{C}-7\right)$, 31.10 (4 C, t, $\left.\mathrm{N}_{\mathrm{PC}} 12, \mathrm{C}-2, \mathrm{C}-4, \mathrm{C}-6, \mathrm{C}-8\right) ; \delta_{\mathrm{P}}-39.63 ; m / z(\mathrm{CI})$ $161\left([\mathrm{M}+1]^{+}, 100 \%\right), 177\left([\mathrm{M}+1]^{+}+\mathrm{O}, 30\right)$. A small sample of cis-1,5-dimethyl-1,5-diphosphacyclooctane was sealed in an evacuated Schlenk tube, the bottom of which was submerged in an oil bath at $35^{\circ} \mathrm{C}$. Crystals suitable for X-ray crystal structure determination were grown by slow sublimation over two weeks.
cis-1-Benzyl-5-methyl-1,5-diphosphacyclooctane 4b. A suspension of 1-benzyl-1-phosphonia-5-phosphabicyclo[3.3.0]octane bromide ($138 \mathrm{mg}, 0.435 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}\left(10 \mathrm{~cm}^{3}\right)$ was treated with a solution of methyllithium in $\mathrm{Et}_{2} \mathrm{O}\left(1.4 \mathrm{~mol} \mathrm{dm}^{-3}\right.$, $\left.0.75 \mathrm{~cm}^{3}, 0.91 \mathrm{mmol}\right)$ at $-78^{\circ} \mathrm{C}$. The general procedure and work-up were as previously described and furnished a white solid ($86 \mathrm{mg}, 77 \%$) [Found (CI): $\mathrm{M}^{+}+1,253.1283 . \mathrm{C}_{14} \mathrm{H}_{23} \mathrm{P}_{2}$ requires 253.1275]; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.90\left(3 \mathrm{H}, \mathrm{d},{ }^{2} J_{\mathrm{PH}} 6, \mathrm{CH}_{3}\right), 1.3-$ $1.4(4 \mathrm{H}, \mathrm{m}), 1.6-1.7(2 \mathrm{H}, \mathrm{m}), 1.7-1.8(2 \mathrm{H}, \mathrm{m}), 1.9-2.1(4 \mathrm{H}$ m), $2.65\left(2 \mathrm{H}, \mathrm{d},{ }^{2} J_{\mathrm{PC}} 2, \mathrm{CH}_{2} \mathrm{Ph}\right), 7.31(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}} 14.97$ ($1 \mathrm{C}, \mathrm{dd},{ }^{1} J_{\mathrm{PC}} 15, J_{\mathrm{PC}} 7, C \mathrm{H}_{3}$), $25.00\left(2 \mathrm{C}, \mathrm{t}, \mathrm{N}_{\mathrm{PC}} 28, \mathrm{C}-3, \mathrm{C}-7\right.$), 29.21 ($2 \mathrm{C}, \mathrm{d},{ }^{1} J_{\mathrm{PC}} 25, \mathrm{C}-2, \mathrm{C}-8$), 31.96 ($2 \mathrm{C}, \mathrm{d},{ }^{1} J_{\mathrm{PC}} 15, \mathrm{C}-4$, C-6), $38.01\left(1 \mathrm{C}, \mathrm{dd},{ }^{1} J_{\mathrm{PC}} 15, J_{\mathrm{PC}} 5, \mathrm{CH}_{2} \mathrm{Ph}\right.$), 125.97 (1 C , s, paraC), $129.59(2 \mathrm{C}, \mathrm{s}), 129.64\left(2 \mathrm{C}, \mathrm{d}, J_{\mathrm{PC}} 6\right), 139.10\left(1 \mathrm{C}, \mathrm{d},{ }^{2} J_{\mathrm{PC}} 5\right.$, ipso-C); $\delta_{\mathrm{P}}-40.24$ (d, $J_{\mathrm{PP}} 36, \mathrm{P}-5$), -21.58 (d, $\left.J_{\mathrm{PP}} 36, \mathrm{P}-1\right) ; m / z$ (CI) $253\left([\mathrm{M}+1]^{+}, 21 \%\right), 269\left([\mathrm{M}+1]^{+}+\mathrm{O}, 100\right)$.
cis-1-Benzyl-5-phenyl-1,5-diphosphacyclooctane 4c. A suspension of 1-benzyl-1-phosphonia-5-phosphabicyclo[3.3.0]octane bromide ($1.06 \mathrm{~g}, 3.34 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}\left(25 \mathrm{~cm}^{3}\right)$ was cooled to $-78^{\circ} \mathrm{C}$ and treated with a solution of phenyllithium in cyclohexane- $\mathrm{Et}_{2} \mathrm{O}\left(7: 3,1.8 \mathrm{~mol} \mathrm{dm}{ }^{-3}, 0.50 \mathrm{~cm}^{3}, 0.90 \mathrm{mmol}\right)$, The same general procedure as previously described yielded the title compound as a white solid ($680 \mathrm{mg}, 65 \%$) [Found (CI) $\mathrm{M}^{+}+1,315.1440 . \mathrm{C}_{19} \mathrm{H}_{25} \mathrm{P}_{2}$ requires 315.1432); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.2-$ $1.3(2 \mathrm{H}, \mathrm{m}), 1.3-1.5(2 \mathrm{H}, \mathrm{m}), 1.6-1.7(4 \mathrm{H}, \mathrm{m}), 1.8-2.1(4 \mathrm{H}$, $\mathrm{m})$, $2.52\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right), 7.1-7.5(10 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}} 24.42(2 \mathrm{C}$, $\mathrm{t}, \mathrm{N}_{\mathrm{PC}} 28, \mathrm{C}-3, \mathrm{C}-7$), 28.18 ($2 \mathrm{C}, \mathrm{d},{ }^{1} J_{\mathrm{PC}} 25, \mathrm{C}-2, \mathrm{C}-8$), 29.52 $\left(2 \mathrm{C}, \mathrm{d},{ }^{1} J_{\mathrm{PC}} 15, \mathrm{C}-4, \mathrm{C}-6\right), 37.72\left(1 \mathrm{C}, \mathrm{dd},{ }^{1} J_{\mathrm{PC}} 14, J_{\mathrm{PC}} 6\right.$, $\mathrm{CH}_{2} \mathrm{Ph}$), $125.53\left(1 \mathrm{C}, \mathrm{d},{ }^{5} J_{\mathrm{PC}} 3\right.$, benzyl-para-C), $126.95(1 \mathrm{C}, \mathrm{s}$, phenyl-para-C), 127.02 ($2 \mathrm{C}, \mathrm{d}, J_{\mathrm{PC}} 12$, phenyl), 128.12 ($2 \mathrm{C}, \mathrm{s}$, benzyl), 128.58 ($2 \mathrm{C}, \mathrm{s}$, phenyl), 129.16 ($2 \mathrm{C}, \mathrm{d}, J_{\mathrm{PC}} 6$, benzyl), $131.49\left(1 \mathrm{C}, \mathrm{d},{ }^{1} J_{\mathrm{PC}} 18\right.$, phenyl-ipso-C), 138.12 ($1 \mathrm{C}, \mathrm{d}, J_{\mathrm{PC}} 5$, benzyl-ipso-C); $\delta_{\mathrm{P}}-23.69$ (d, $J_{\mathrm{PP}} 56, \mathrm{P}-5$), -22.61 (d, $J_{\mathrm{PP}} 56$, $\mathrm{P}-1) ; m / z(\mathrm{CI}) 315\left([\mathrm{M}+1]^{+}, 3 \%\right), 238\left([\mathrm{M}+1]^{+}-\mathrm{Ph}, 98\right), 223$ $\left(\mathrm{M}^{+}-\mathrm{PhCH}_{2}, 100\right)$.
cis-1,5-Dibenzyl-1,5-diphosphacyclooctane 4d. A suspension of 1-benzyl-1-phosphonia-5-phosphabicyclo[3.3.0]octane bromide ($2.50 \mathrm{~g}, 7.88 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}\left(60 \mathrm{~cm}^{3}\right)$ was cooled to $-78{ }^{\circ} \mathrm{C}$ and treated with a solution of benzylmagnesium chloride in THF ($2.0 \mathrm{~mol} \mathrm{dm}{ }^{-3}, 7.5 \mathrm{~cm}^{3}, 15 \mathrm{mmol}$). After warming to room temperature the reaction was stirred for one hour, with intermittent sonication to help dissolve the solids. The reaction mixture was quenched by the addition of water $\left(0.30 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered through a glass sinter and the volatiles removed in vacuo to furnish a waxy solid ($1.87 \mathrm{~g}, 72 \%$) [Found (CI): M^{+}, 329.1586. $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{P}_{2}$ requires 329.1588]; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ 1.3-1.4 (4 H, m), 1.6-1.7 (4 H, m), 1.7-1.9 (2 H, m), 1.9-2.2 $(2 \mathrm{H}, \mathrm{m}), 2.61\left(4 \mathrm{H}, \mathrm{s}, \mathrm{C} H_{2} \mathrm{Ph}\right), 7.0-7.4(10 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}} 24.66$ ($2 \mathrm{C}, \mathrm{t},{ }^{2} J_{\mathrm{PC}} 14, \mathrm{C}-3, \mathrm{C}-7$), 28.51 ($4 \mathrm{C}, \mathrm{t}, \mathrm{N}_{\mathrm{PC}} 17, \mathrm{C}-2, \mathrm{C}-4, \mathrm{C}-6$, C-8), $37.80\left(2 \mathrm{C}, \mathrm{dd},{ }^{1} J_{\mathrm{PC}} 8, J_{\mathrm{PC}} 3, \mathrm{CH}_{2} \mathrm{Ph}\right), 125.59(1 \mathrm{C}$, s, paraC), $128.20(2 \mathrm{C}, \mathrm{s}), 129.26\left(2 \mathrm{C}, \mathrm{t}, \mathrm{N}_{\mathrm{PC}} 6\right), 138.28\left(1 \mathrm{C}, \mathrm{d},{ }^{2} J_{\mathrm{PC}} 5\right.$, ipso-C); $\delta_{\mathrm{P}}-22.40 ; m / z(\mathrm{CI}) 329\left([\mathrm{M}+1]^{+}, 15 \%\right), 91\left(\mathrm{PhCH}_{2}{ }^{+}\right.$, 55), 59 (100).
cis-1,6-Dimethyl-1,6-diphosphacyclononane 4e. A suspension of 1-methyl-1-phosphonia-6-phosphabicyclo[4.3.0]nonane iodide ($528 \mathrm{mg}, 1.75 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}\left(10 \mathrm{~cm}^{3}\right)$, cooled to $-78^{\circ} \mathrm{C}$, was treated with an excess of a solution of methyllithium in $\mathrm{Et}_{2} \mathrm{O}\left(1.4 \mathrm{~mol} \mathrm{dm}{ }^{-3}, 2.5 \mathrm{~cm}^{3}, 3.5 \mathrm{mmol}\right)$ and stirred. The procedure and work-up was as for the previous reaction and furnished a clear oil (283 mg, 85\%) (Found (CI): $\mathrm{M}^{+}+1$, 191.1128. $\mathrm{C}_{9} \mathrm{H}_{21} \mathrm{P}_{2}$ requires 191.1118); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.94(6 \mathrm{H}, \mathrm{d}$, $\left.{ }^{2} J_{\mathrm{PH}} 3, \mathrm{C} H_{3}\right), 1.33(4 \mathrm{H}, \mathrm{m}), 1.4-1.7(10 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}} 12.22(2 \mathrm{C}, \mathrm{X}$ part of an ABX system, $\left.\mathrm{N}_{\mathrm{PC}} 11, C \mathrm{H}_{3}\right), 19.52\left(1 \mathrm{C}, \mathrm{t},{ }^{2} J_{\mathrm{PC}} 7\right.$, C-8), 25.19 ($2 \mathrm{C}, \mathrm{X}$ part of an $\mathrm{AA}^{\prime} \mathrm{X}$ system, $\mathrm{N}_{\mathrm{PC}} 26, \mathrm{C}-3, \mathrm{C} 4$), 25.38 (2 C, X part of an ABX system, $\mathrm{N}_{\mathrm{PC}} 16$), 28.62 (2 C, X part of an ABX system, $\mathrm{N}_{\mathrm{PC}} 10$); $\delta_{\mathrm{P}}-39.77 ; \mathrm{m} / \mathrm{z}(\mathrm{CI}) 191$ $\left.[\mathrm{M}+1]^{+}, 27 \%\right), 191\left([\mathrm{M}+1]^{+}+\mathrm{O}, 100\right)$.
cis-1,6-Dimethyl-1,6-diphosphacyclononane-1,6-disulfide. cis-1,6-Dimethyl-1,6-diphosphacyclononane ($150 \mathrm{mg}, 0.79 \mathrm{mmol}$) in benzene ($10 \mathrm{~cm}^{3}$) was treated with sulfur ($65 \mathrm{mg}, 0.25 \mathrm{mmol}$) and heated at reflux for 20 hours. The solvent was removed in vacuo to leave a yellow residue which was extracted with $\mathrm{CH}_{3} \mathrm{CN}\left(2 \times 20 \mathrm{~cm}^{3}\right)$ and filtered to remove the excess sulfur. The solvent was removed to leave an off-white solid, which was recrystallised from acetonitrile and $\mathrm{Et}_{2} \mathrm{O}(183 \mathrm{mg}, 91 \%) \mathrm{mp}$ $173-175{ }^{\circ} \mathrm{C}$ (Found: C, $42.5 ; \mathrm{H}, 7.95 . \mathrm{C}_{9} \mathrm{H}_{20} \mathrm{P}_{2} \mathrm{~S}_{2}$ requires C, $42.5 ; \mathrm{H}, 7.9 \%)$; $\delta_{\mathrm{H}}\left(\mathrm{CD}_{3} \mathrm{CN}\right) 1.62\left(6 \mathrm{H}, \mathrm{d},{ }^{2} J_{\mathrm{PH}} 13, \mathrm{CH}_{3}\right), 1.9-2.3$ $(14 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}} 18.72\left(1 \mathrm{C}, \mathrm{t},{ }^{2} J_{\mathrm{PC}} 5, \mathrm{C}-8\right), 21.65\left(2 \mathrm{C}, \mathrm{d},{ }^{1} J_{\mathrm{PC}} 46\right.$, CH_{3}), 22.14 (2 C, s, C-3, C-4), 31.85 ($2 \mathrm{C}, \mathrm{d},{ }^{1} J_{\mathrm{PC}} 49$), 34.06 (dd, ${ }^{1} J_{\mathrm{PC}} 47$); $\delta_{\mathrm{P}} 43.76$. Slow diffusion of $\mathrm{Et}_{2} \mathrm{O}$ into a saturated solution of the title compound in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ led to the formation of crystals suitable for X-ray structural determination.
cis-1,6-Dimethyl-1,6-diphosphacyclodecane 4f. A suspension of 1-methyl-1-phosphonia-6-phosphabicyclo[4.4.0]decane iodide ($351 \mathrm{mg}, 1.11 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}\left(10 \mathrm{~cm}^{3}\right)$, cooled to $-78^{\circ} \mathrm{C}$, was treated with an excess of methyllithium in $\mathrm{Et}_{2} \mathrm{O}(1.4 \mathrm{~mol}$ $\mathrm{dm}^{-3}, 1.5 \mathrm{~cm}^{3}, 2.1 \mathrm{mmol}$). The procedure and work-up was as for the previous reactions and furnished a white solid (160 mg , $70 \%) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.98\left(6 \mathrm{H}, \mathrm{d},{ }^{2} J_{\mathrm{PH}} 3, \mathrm{CH}_{3}\right), 1.49(4 \mathrm{H}, \mathrm{m}), 1.5-$ $1.8(10 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}} 12.30\left(2 \mathrm{C}, \mathrm{d},{ }^{1} J_{\mathrm{PC}} 11, C \mathrm{H}_{3}\right), 25.02(4 \mathrm{C}, \mathrm{dd}$, $\left.{ }^{2} J_{\mathrm{PC}} 12,{ }^{3} J_{\mathrm{PC}} 8, \mathrm{C}-3, \mathrm{C}-5, \mathrm{C}-7, \mathrm{C}-10\right), 26.32\left(4 \mathrm{C}, \mathrm{d},{ }^{1} J_{\mathrm{PC}} 15, \mathrm{C}-3\right.$, $\mathrm{C}-4, \mathrm{C}-8, \mathrm{C}-9) ; \delta_{\mathrm{P}}-37.32$. A small sample of the title compound was placed in an evacuated Schlenk tube, the bottom of which was placed in an oil bath at $40^{\circ} \mathrm{C}$ in a room held at $4{ }^{\circ} \mathrm{C}$. After two weeks crystals suitable for an X-ray crystal structure determination had formed on the upper regions of the tube.
cis-1,6-Dibenzyl-1,6-diphosphacyclodecane 4g. A suspension of 1-benzyl-1-phosphonia-6-phosphabicyclo[4.4.0]decane bromide ($700 \mathrm{mg}, 2.03 \mathrm{mmol}$) in THF $\left(60 \mathrm{~cm}^{3}\right)$ was cooled to $-78^{\circ} \mathrm{C}$ and treated with a solution of benzylmagnesium chloride in THF ($\left.2.0 \mathrm{~mol} \mathrm{dm}^{-3}, 2.0 \mathrm{~cm}^{3}, 4.0 \mathrm{mmol}\right)$. After warming to room temperature the reaction was stirred for one hour, with intermittent sonication to help dissolve the solids. The reaction mixture was quenched by the addition of water $\left(0.30 \mathrm{~cm}^{3}\right)$, then dried $\left(\mathrm{MgSO}_{4}\right)$ and the volatiles removed in vacuo. The resulting
residue was extracted with light petroleum (bp $30-40^{\circ} \mathrm{C}, 2 \times 20$ cm^{3}), filtered through a glass sinter and evaporated to dryness to furnish a waxy solid ($610 \mathrm{mg}, 84 \%$) [Found (CI): $\mathrm{M}^{+}+1$, 357.1888. $\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{P}_{2}$ requires 357.1901]; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ 1.4-1.7 (16 $\mathrm{H}, \mathrm{m}), 2.69\left(4 \mathrm{H}, \mathrm{s}, \mathrm{CH} \mathrm{P}_{2} \mathrm{Ph}\right), 7.10(6 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.18(4 \mathrm{H}, \mathrm{m}$, $\mathrm{ArH}) ; \delta_{\mathrm{C}} 24.15$ (4 C, d, $\left.{ }^{1} J_{\mathrm{PC}} 14, \mathrm{C}-2, \mathrm{C}-5, \mathrm{C}-7, \mathrm{C}-10\right), 25.28$ (4 C , X part of an $\mathrm{AA}^{\prime} \mathrm{X}$ system, $\left.\mathrm{N}_{\mathrm{PC}} 5, \mathrm{C}-3, \mathrm{C}-4, \mathrm{C}-8, \mathrm{C}-9\right), 35.47$ (2 C, X part of an ABX system, $\left.\mathrm{N}_{\mathrm{PC}} 12, \mathrm{CH}_{2} \mathrm{Ph}\right), 125.57(1 \mathrm{C}, \mathrm{s}$, para-C), 128.26 ($2 \mathrm{C}, \mathrm{s}$), 128.97 ($2 \mathrm{C}, \mathrm{d}, J_{\mathrm{PC}} 6$), 138.47 ($1 \mathrm{C}, \mathrm{d}$, ${ }^{2} J_{\mathrm{PC}} 5$, ipso-C); $\delta_{\mathrm{P}}-18.99 ; m / z(\mathrm{CI}) 357\left([\mathrm{M}+1]^{+}, 60 \%\right), 265$ $\left([\mathrm{M}+1]^{+}-\mathrm{PhCH}_{2}, 100\right)$.

Dialkylated 1,k+2-diphosphabicyclo[k.l.0]alkanes

cis-1,5-Dimethyl-1,5-diphosphoniabicyclo[3.3.0]octane bis(trifluoromethanesulfonate) 5a. To a stirred solution of 1-methyl-1-phosphonia-5-phosphabicyclo[3.3.0]octane iodide ($118 \mathrm{mg}, 0.41 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(5 \mathrm{~cm}^{3}\right)$ was added methyl trifluoromethanesulfonate ($130 \mathrm{mg}, 0.82 \mathrm{mmol}$). The solution cleared instantly. After five minutes, solids began to form in the solution. After three hours, the solids were allowed to settle and the colourless solution was decanted away. The solids were washed ($1 \times 5 \mathrm{~cm}^{3} \mathrm{CH}_{2} \mathrm{Cl}_{2}$) and dried under high vacuum to leave an extremely hygroscopic, white crystalline powder (170 $\mathrm{mg}, 87 \%$) mp 130-135 ${ }^{\circ} \mathrm{C}$ (Found: C, 24.6; H, 3.8. $\mathrm{C}_{10} \mathrm{H}_{18}{ }^{-}$ $\mathrm{F}_{6} \mathrm{O}_{6} \mathrm{P}_{2} \mathrm{~S}_{2}$ requires C, 25.3; H, 3.8\%); $\delta_{\mathrm{H}}\left(\mathrm{CD}_{3} \mathrm{CN}\right) 1.95(2 \mathrm{H}, \mathrm{m})$, $2.30(6 \mathrm{H}, \mathrm{m}), 2.60(6 \mathrm{H}, \mathrm{m}), 2.82(4 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}} 6.25\left(2 \mathrm{C}, \mathrm{t}, \mathrm{N}_{\mathrm{PC}}\right.$ $\left.41, C H_{3}\right), 25.15\left(2 \mathrm{C}, \mathrm{d},{ }^{2} J_{\mathrm{PC}} 6, \mathrm{C}-2, \mathrm{C}-5\right), 26.19\left(4 \mathrm{C}, \mathrm{t}, \mathrm{N}_{\mathrm{PC}} 51\right.$, C-1, C-3, C-4, C-6); $\delta_{\mathrm{P}} 54.00$.
cis-1,6-Dimethyl-1,6-diphosphoniabicyclo[4.3.0]nonane bis(trifluoromethanesulfonate) 5b. A stirred solution of cis-1,6diphosphabicyclo[4.3.0]nonane ($77 \mathrm{mg}, 0.48 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $\left(4 \mathrm{~cm}^{3}\right)$, at $0{ }^{\circ} \mathrm{C}$, was treated with methyl trifluoromethanesulfonate ($160 \mathrm{mg}, 0.98 \mathrm{mmol}$). The mixture was allowed to warm to room temperature. After one hour, solids began to appear in solution. After stirring overnight, solvent and volatiles were removed under high vacuum to leave a colourless hygroscopic solid in quantitative yield (Found: C, 26.5; H, 4.6. $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{~F}_{6} \mathrm{O}_{6} \mathrm{P}_{2} \mathrm{~S}_{2}$ requires C, $\left.27.05 ; \mathrm{H}, 4.1 \%\right)$; $\delta_{\mathrm{H}}\left(\mathrm{CD}_{3} \mathrm{CN}\right) 1.90-$ $2.30(4 \mathrm{H}, \mathrm{m}), 2.50-2.70(8 \mathrm{H}, \mathrm{m}), 2.90-3.20(8 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}} 6.23(2$ $\left.\mathrm{C}, \mathrm{t}, \mathrm{N}_{\mathrm{PC}} 39, \mathrm{CH}_{3}\right), 19.59(2 \mathrm{C}, \mathrm{s}, \mathrm{C}-2, \mathrm{C}-3), 21.53\left(2 \mathrm{C}, \mathrm{t}, \mathrm{N}_{\mathrm{PC}} 34\right.$, C-5, C-7), 23.81 ($1 \mathrm{C}, \mathrm{s}, \mathrm{C}-6$), 26.36 ($2 \mathrm{C}, \mathrm{t}, \mathrm{N}_{\mathrm{PC}} 51, \mathrm{C}-1, \mathrm{C}-4$); δ_{P} 25.86.
cis-1,6-Dimethyl-1,6-diphosphoniabicyclo[4.4.0]decane bis(trifluoromethanesulfonate) 5c. A stirred solution of cis-1,6diphosphabicyclo[4.4.0]decane ($19 \mathrm{mg}, 0.1 \mathrm{mmol}$) in $\mathrm{CD}_{3} \mathrm{CN}$ $\left(0.5 \mathrm{~cm}^{3}\right)$ was treated with methyl trifluoromethanesulfonate (35 $\mathrm{mg}, 0.2 \mathrm{mmol}$). The mixture was analysed by NMR, without isolation of the product; $\delta_{\mathrm{H}}\left(\mathrm{CD}_{3} \mathrm{CN}\right) 1.60(8 \mathrm{H}, \mathrm{m}), 1.95(6 \mathrm{H}$, $\left.\mathrm{d},{ }^{2} J_{\mathrm{PH}} 10, \mathrm{CH}_{3}\right), 2.45(8 \mathrm{H}, \mathrm{m})$; $\delta_{\mathrm{C}} 3.75\left(2 \mathrm{C}, \mathrm{t}, \mathrm{N}_{\mathrm{PC}} 41, \mathrm{CH}_{3}\right)$, 19.42 ($4 \mathrm{C}, \mathrm{t}, \mathrm{N}_{\mathrm{PC}} 34, \mathrm{C}-1, \mathrm{C}-4, \mathrm{C}-5, \mathrm{C}-8$), 20.24 ($4 \mathrm{C}, \mathrm{s}, \mathrm{C}-2$, C-3, C-6, C-7); $\delta_{\mathrm{P}} 4.07$.

trans-Dialkyldiphosphacycloalkane mono-oxides

trans-1,5-Dimethyl-1-hydroxy-1,5-diphosphoniacyclooctane

bis(trifluoromethanesulfonate). To a stirred solution of cis-1,5-dimethyl-1,5-diphosphoniabicyclo[3.3.0]octane bis(trifluoromethanesulfonate) ($250 \mathrm{mg}, 0.6 \mathrm{mmol}$) in acetonitrile $\left(2 \mathrm{~cm}^{3}\right)$ was added water ($10 \mathrm{mg}, 0.6 \mathrm{mmol}$). After five minutes, the solvent was removed in vacuo to leave a solid residue, which was recrystallised from acetonitrile and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and dried under high vacuum to give a crystalline solid in quantitative yield mp $150-155^{\circ} \mathrm{C}$ (Found: C, 24.3; H, 4.1. $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{~F}_{6} \mathrm{O}_{7} \mathrm{P}_{2} \mathrm{~S}_{2}$ requires C, 24.4; H, $4.1 \%)$; $\delta_{\mathrm{H}}\left(\mathrm{CD}_{3} \mathrm{CN}\right) 0.98\left(3 \mathrm{H}, \mathrm{dd},{ }^{2} J_{\mathrm{PH}} 15,{ }^{3} J_{\mathrm{HH}} 5\right.$, $\left.\mathrm{C} H_{3} \mathrm{PH}\right), 1.37\left[3 \mathrm{H}, \mathrm{d},{ }^{2} J_{\mathrm{PH}} 13, \mathrm{CH}_{3} \mathrm{P}(\mathrm{OH})\right], 2.10(4 \mathrm{H}, \mathrm{m}), 2.50$ $(8 \mathrm{H}, \mathrm{m}), 6.25\left(1 \mathrm{H}, \mathrm{d},{ }^{1} J_{\mathrm{PH}} 504, \mathrm{P} H\right), 11.40(1 \mathrm{H}, \mathrm{s}, \mathrm{POH})$; $\delta_{\mathrm{C}} 4.27\left(1 \mathrm{C}, \mathrm{d},{ }^{1} J_{\mathrm{PC}} 53, \mathrm{CH}_{3} \mathrm{PH}\right), 13.64\left(1 \mathrm{C}, \mathrm{d},{ }^{1} J_{\mathrm{PC}} 64\right.$, $\left.\mathrm{CH}_{3} \mathrm{POH}\right), 14.58$ ($2 \mathrm{C}, \mathrm{t},{ }^{2} J_{\mathrm{PC}} 6, \mathrm{C}-2, \mathrm{C}-5$), 18.38 ($2 \mathrm{C}, \mathrm{d},{ }^{1} J_{\mathrm{PC}} 47$, C-3, C-4), 25.28 ($2 \mathrm{C}, \mathrm{d},{ }^{1} J_{\mathrm{PC}} 61, \mathrm{C}-1, \mathrm{C}-6$); $\delta_{\mathrm{P}} 84.60$ (P-1), 5.30 (d, ${ }^{1} J_{\mathrm{PH}} 505, \mathrm{P}-5$).
trans-1,5-Dimethyl-1,5-diphosphacyclooctane-1-oxide 6a. To
a stirred solution of cis-1,5-dimethyl-1,5-diphosphoniabicyclo[3.3.0]octane bis(trifluoromethanesulfonate) ($370 \mathrm{mg}, 0.79$ mmol) in acetonitrile ($3 \mathrm{~cm}^{3}$) was added water ($15 \mathrm{mg}, 0.79$ mmol). After five minutes, an aqueous solution of sodium hydroxide ($5 \mathrm{~mol} \mathrm{dm}{ }^{-3}, 0.38 \mathrm{~cm}^{3}, 1.9 \mathrm{mmol}$) was added. After stirring for a further two hours, solvent and volatiles were removed under high vacuum to leave a solid residue, which was extracted ($2 \times 5 \mathrm{~cm}^{3} \mathrm{CH}_{2} \mathrm{Cl}_{2}$) and filtered through a glass sinter. Removal of solvent in vacuo left a colourless, sticky solid which could not be recrystallised ($146 \mathrm{mg}, 97 \%$); $\delta_{\mathrm{H}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 0.98$ $\left[3 \mathrm{H}, \mathrm{d},{ }^{2} J_{\mathrm{PH}} 6, \mathrm{CH}_{3} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{2}\right.$], $1.37\left[3 \mathrm{H}, \mathrm{d},{ }^{2} J_{\mathrm{PH}} 18, \mathrm{C} H_{3} \mathrm{PO}-\right.$ $\left(\mathrm{CH}_{2}\right)_{2}$], $1.6-1.9(8 \mathrm{H}, \mathrm{m}), 2.0-2.3(4 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}} 13.13\left[1 \mathrm{C}, \mathrm{d},{ }^{1} J_{\mathrm{PC}}\right.$ $\left.9, \mathrm{CH}_{3} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{2}\right], 16.58\left[1 \mathrm{C}, \mathrm{d},{ }^{1} J_{\mathrm{PC}} 68, \mathrm{CH}_{3} \mathrm{PO}\left(\mathrm{CH}_{2}\right)_{2}\right], 18.39$ (2 C , dd, ${ }^{2} J_{\mathrm{PC}} 12,{ }^{2} J_{\mathrm{PC}} 3, \mathrm{C}-2, \mathrm{C}-5$), 29.47 (2 C , dd, ${ }^{1} J_{\mathrm{PC}} 64,{ }^{3} J_{\mathrm{PC}}$ 9, C-1, C-6), 29.56 ($2 \mathrm{C}, \mathrm{dd},{ }^{1} J_{\mathrm{PC}} 11,{ }^{3} \mathrm{~J}_{\mathrm{PC}} 3, \mathrm{C}-3, \mathrm{C}-4$); $\delta_{\mathrm{P}} 46.81$ (P-1), -42.22 (P-5); m / z (EI) 192 (${ }^{+}, 1 \%$), 177 (100), 135 (7).

trans-1,5-Dimethyl-1,5-diphosphacyclooctane-1-oxide-5-

sulfide. A solution of trans-1,5-dimethyl-1,5-diphosphacyclo-octane-1-oxide ($44 \mathrm{mg}, 0.23 \mathrm{mmol}$) in benzene ($2 \mathrm{~cm}^{3}$) was treated with sulfur ($7 \mathrm{mg}, 0.23 \mathrm{mmol}$), then heated to reflux for one hour. On cooling to room temperature, the solvent was removed in vacuo to leave a white, sticky solid in quantitative yield [Found (EI): 224.0540. $\mathrm{C}_{8} \mathrm{H}_{18} \mathrm{OP}_{2} \mathrm{~S}$ requires 224.0554]; $\delta_{\mathrm{H}}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) 1.40\left(3 \mathrm{H}, \mathrm{d},{ }^{2} J_{\mathrm{PH}} 13, \mathrm{CH}_{3} \mathrm{PO}\right), 1.62\left(3 \mathrm{H}, \mathrm{d},{ }^{2} J_{\mathrm{PH}} 12\right.$, $\left.\mathrm{CH}_{3} \mathrm{PS}\right), 2.00(10 \mathrm{H}, \mathrm{m}), 2.50(2 \mathrm{H}, \mathrm{m})$; $\delta_{\mathrm{C}} 15.75(2 \mathrm{C}, \mathrm{s}, \mathrm{C}-2$, C-5), 17.96 ($1 \mathrm{C}, \mathrm{d},{ }^{1} J_{\mathrm{PC}} 68, \mathrm{CH}_{3} \mathrm{PO}$), 21.61 ($1 \mathrm{C}, \mathrm{d},{ }^{1} J_{\mathrm{PC}} 56$, $C H_{3} \mathrm{PS}$), 29.71 ($2 \mathrm{C}, \mathrm{d},{ }^{1} J_{\mathrm{PC}} 63, \mathrm{C}-1, \mathrm{C}-6$), 32.77 ($2 \mathrm{C}, \mathrm{d},{ }^{1} J_{\mathrm{PC}} 48$, $\mathrm{C}-3, \mathrm{C}-4) ; \delta_{\mathrm{P}} 45.48$ (P-1), 41.51 (P-5); m / z (EI) 224 ($\mathrm{M}^{+}, 23 \%$), 192 (15).
trans-1,6-Dimethyl-1-hydroxy-1,6-diphosphoniacyclononane bis(trifluoromethanesulfonate). To cis-1,6-dimethyl-1,6-diphosphoniabicyclo[4.3.0]nonane bis(trifluoromethanesulfonate) $(0.19 \mathrm{~g}, 0.4 \mathrm{mmol})$ dissolved in acetonitrile $\left(2 \mathrm{~cm}^{3}\right)$ was added water ($8 \mathrm{mg}, 0.4 \mathrm{mmol}$). After stirring for five minutes, solvent and volatiles were removed in vacuo to leave an oily residue, which was recrystallised from acetonitrile and dichloromethane and dried under high vacuum to give a white solid (Found: C, 26.1; H, 4.6. $\mathrm{C}_{11} \mathrm{H}_{22} \mathrm{~F}_{6} \mathrm{O}_{7} \mathrm{P}_{2} \mathrm{~S}_{2}$ requires $\mathrm{C}, 26.1 ; \mathrm{H}, 4.4 \%$); $\delta_{\mathrm{H}}\left(\mathrm{CD}_{3} \mathrm{CN}\right) 1.70(10 \mathrm{H}, \mathrm{m}), 2.25(10 \mathrm{H}, \mathrm{m}), 6.10\left(1 \mathrm{H}, \mathrm{d},{ }^{1} J_{\mathrm{PH}}\right.$ $504, \mathrm{P} H), 11.00(1 \mathrm{H}, \mathrm{s}, \mathrm{POH}) ; \delta_{\mathrm{C}} 4.00\left(1 \mathrm{C}, \mathrm{d},{ }^{1} J_{\mathrm{PC}} 51, \mathrm{CH}_{3} \mathrm{PH}\right.$), $13.11\left[1 \mathrm{C}, \mathrm{d},{ }^{1} J_{\mathrm{PC}} 64, C \mathrm{H}_{3} \mathrm{P}(\mathrm{OH})\right.$], $14.52\left(1 \mathrm{C}, \mathrm{t},{ }^{2} J_{\mathrm{PC}} 6, \mathrm{C}-6\right)$, 16.78 ($1 \mathrm{C}, \mathrm{d},{ }^{1} J_{\mathrm{PC}} 47, \mathrm{C}-5$), 19.74 ($1 \mathrm{C}, \mathrm{s}, \mathrm{C}-3$), 20.08 (1 C , dd, $\left.{ }^{1} J_{\mathrm{PC}} 47,{ }^{3} J_{\mathrm{PC}} 4, \mathrm{C}-4\right), 21.67\left(1-\mathrm{C}, \mathrm{t},{ }^{2} J_{\mathrm{PC}} 4, \mathrm{C}-3\right), 23.96(1 \mathrm{C}, \mathrm{d}$, $\left.{ }^{1} J_{\mathrm{PC}} 61, \mathrm{C}-1\right), 26.13$ ($1 \mathrm{C}, \mathrm{d},{ }^{1} J_{\mathrm{PC}} 62, \mathrm{C}-7$); $\delta_{\mathrm{P}} 86.30$ (P-1), 7.84 (d, ${ }^{1} J_{\mathrm{PH}} 504, \mathrm{P}-5$).
trans-1,6-Dimethyl-1,6-diphosphacyclononane-1-oxide 6b. A stirred solution of cis-1,6-dimethyl-1,6-diphosphoniabicyclo[4.3.0]nonane bis(trifluoromethanesulfonate) ($136 \mathrm{mg}, 0.27$ mmol) in acetonitrile ($3 \mathrm{~cm}^{3}$) was treated with water ($5 \mathrm{mg}, 0.27$ mmol). After five minutes, aqueous NaOH was added (4 mol $\mathrm{dm}^{-3}, 0.14 \mathrm{~cm}^{3}, 0.54 \mathrm{mmol}$). After two hours, solvent and volatiles were removed in vacuo. The resulting residue was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(2 \times 5 \mathrm{~cm}^{3}\right)$ and filtered through a glass sinter, removal of solvent in vacuo leaving a sticky solid (0.047 g, 84\%) [Found (EI): 191.0772. $\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{OP}_{2}\left(\mathrm{M}-\mathrm{CH}_{3}\right)$ requires $191.0755] ; \delta_{\mathrm{H}}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) 1.00\left[3 \mathrm{H}, \mathrm{d},{ }^{2} J_{\mathrm{PH}} 5, \mathrm{CH}_{3} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{2}\right], 1.40$ $\left(3 \mathrm{H}, \mathrm{d},{ }^{2} J_{\mathrm{PH}} 15, \mathrm{C} H_{3} \mathrm{PO}\right), 1.5-2.3(14 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}} 14.11[1 \mathrm{C}, \mathrm{d}$, ${ }^{1} J_{\mathrm{PC}} 12, \mathrm{CH}_{3} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{2}$, $14.90\left(1 \mathrm{C}, \mathrm{d},{ }^{1} J_{\mathrm{PC}} 68, \mathrm{CH}_{3} \mathrm{PO}\right), 18.41(1$ $\left.\mathrm{C}, \mathrm{d},{ }^{1} J_{\mathrm{PC}} 17, \mathrm{C}-6\right), 21.45\left(1 \mathrm{C}, \mathrm{d},{ }^{2} J_{\mathrm{PC}} 4, \mathrm{C}-3\right), 25.35(1 \mathrm{C}, \mathrm{dd}$, $\left.{ }^{2} J_{\mathrm{PC}} 5,{ }^{3} J_{\mathrm{PC}} 12, \mathrm{C}-5\right), 26.51\left(1 \mathrm{C}, \mathrm{dd},{ }^{1} J_{\mathrm{PC}} 67,{ }^{2} J_{\mathrm{PC}} 7, \mathrm{C}-1\right), 28.64$ ($1 \mathrm{C}, \mathrm{d}^{2}{ }^{2} J_{\mathrm{PC}} 14, \mathrm{C}-2$), 28.73 ($1 \mathrm{C}, \mathrm{dd},{ }^{1} J_{\mathrm{PC}} 66,{ }^{3} J_{\mathrm{PC}} 9, \mathrm{C}-7$), 31.53 (d, $\left.{ }^{1} J_{\mathrm{PC}} 14, \mathrm{C}-4\right) ; \delta_{\mathrm{P}} 52.12(\mathrm{P}-1),-43.13$ (P-6); m / z (EI) $206\left(\mathrm{M}^{+}\right.$, $0.8 \%), 191$ (100), 163 (27), 135 (10).
trans-1,6-Dimethyl-1,6-diphosphacyclononane-1,6-dioxide. A stirred solution of trans-1,6-dimethyl-1,6-diphosphacyclononane ($48 \mathrm{mg}, 0.25 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(2 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ was treated with an aqueous solution of $\mathrm{H}_{2} \mathrm{O}_{2}\left(30 \%, 0.02 \mathrm{~cm}^{3}\right)$. After one day, volatiles were removed in vacuo to leave a colourless oil in quantitative yield [Found (EI): 222.0946. $\mathrm{C}_{9} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{P}_{2}$ requires 222.0938]; $\delta_{\mathrm{H}}\left(\mathrm{CD}_{3} \mathrm{CN}\right) 1.30\left(6 \mathrm{H}, \mathrm{d},{ }^{2} J_{\mathrm{PH}} 20, \mathrm{CH}_{3}\right), 1.5-2.0(14$

Table 5 Details of structure analyses

Compounds	2b. S_{2}	2c. S_{2}	3a.I	3b.I	3c.I
Crystal data ${ }^{\text {a }}$					
Formula	$\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{P}_{2} \mathrm{~S}_{2}$	$\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{P}_{2} \mathrm{~S}_{2}$	$\mathrm{C}_{7} \mathrm{H}_{15} \mathrm{IP}_{2}$	$\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{IP}_{2}$	$\mathrm{C}_{9} \mathrm{H}_{19} \mathrm{IP}_{2}$
M	224.2	238.3	288.1	302.1	316.1
Crystal system	Orthorhombic	Monoclinic	Orthorhombic	Orthorhombic	Orthorhombic
Space group (No.)	Pbca (No. 61)	C2/c (No. 15)	$P 2_{1} 2_{1} 2_{1}$ (No. 19)	Pna2 ${ }_{1}$ (No. 33)	Pbca (No. 61)
$a(\AA)$	12.809(5)	14.622(4)	7.032(1)	10.364(1)	10.513(2)
b	12.258(5)	6.646(2)	11.166(2)	12.450(2)	16.833(4)
c	13.684(4)	13.536(4)	13.613(3)	9.294(1)	28.942(5)
$\beta\left({ }^{\circ}\right.$	90	117.57(2)	90	90	90
$U\left(\AA^{3}\right)$	2148.6(14)	1166.0(6)	1068.9(3)	1199.3(3)	5122(2)
Z	8	4	4	4	16
$D_{\mathrm{c}}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	1.39	1.36	1.79	1.67	1.64
$F(000)$	944	504	560	592	2496
$\mu(\mathrm{Mo}-\mathrm{K} \alpha)\left(\mathrm{cm}^{-1}\right)$	7.35	6.81	32.0	28.5	27.1
Data collection and reduction					
Crystal dimensions (mm)	$0.43 \times 0.25 \times 0.18$	$0.20 \times 0.40 \times 0.40$	$0.45 \times 0.45 \times 0.35$	$0.3 \times 0.2 \times 0.2$	$0.20 \times 0.35 \times 0.40$
2θ range (${ }^{\circ}$)	3-45	3-60	4-52	4-50	3-45
Scan method	ω Wyckoff	$\omega-2 \theta$	$\omega-2 \theta$	$\omega-2 \theta$	ω Wyckoff
Total data	1654	1936	1353	1347	4248
Unique data	1406	1713	1353	1347	3732
'Observed' data (NO)	945	1401	1183	964	2489
Min., max. transmission coefft.	0.624, 0.916	0.866, 1.00	0.209, 0.299	0.270, 0.306	0.619, 0.802
Refinement					
Least squares variables (NV)	100	56	91	99	217
R	$0.057{ }^{\text {b }}$	$0.029^{\text {b }}$	$0.022^{\text {b }}$	$0.030^{\text {b }}$	$0.034{ }^{\text {b }}$
$w R$	$0.056{ }^{\text {b }}$	$0.034^{\text {b }}$	$0.030^{\text {b }}$	$0.034^{\text {b }}$	$0.033{ }^{\text {b }}$
S	$1.34{ }^{\text {b }}$	$1.32{ }^{\text {b }}$	$1.51{ }^{\text {b }}$	$1.07{ }^{\text {b }}$	$1.05{ }^{\text {b }}$
g	0.0011	0.0005	0.0002	0.0003	0.0005
Final difference map features (e \AA^{-3})	+0.50, -0.39	+0.28, -0.23	+0.52, -0.38	+1.28, -0.34	+0.40, -0.43

${ }^{a}$ Data common to all: $T=293 \mathrm{~K}$; wavelength $0.71073 \AA$, observation criterion $\left[F_{\mathrm{o}}{ }^{2}>2 \sigma\left(F_{\mathrm{o}}{ }^{2}\right)\right]{ }^{b} R=\Sigma|\Delta| / \Sigma\left|F_{\mathrm{o}}\right| ; w R=\left[\Sigma w \Delta^{2} / \Sigma w F_{\mathrm{o}}{ }^{2}\right]^{1 / 2} ; S=\left[\Sigma w \Delta^{2} /\right.$ $(\mathrm{NO}-\mathrm{NV})]^{1 / 2} ; \Delta=F_{\mathrm{o}}-F_{\mathrm{c}} ; w=\left[\sigma_{\mathrm{c}}{ }^{2}\left(F_{\mathrm{o}}\right)+g F_{\mathrm{o}}{ }^{2}\right]^{-1}, \sigma_{\mathrm{c}}{ }^{2}\left(F_{\mathrm{o}}\right)=$ variance in F_{o} due to counting statistics.
H, m); $\delta_{\mathrm{C}} 15.00$ ($1 \mathrm{C}, \mathrm{C}-6$), $16.81\left(2 \mathrm{C}, \mathrm{d},{ }^{1} J_{\mathrm{PC}} 70, \mathrm{CH}_{3}\right.$), 21.14 (2 C, C-2, C-3), 28.25 ($2 \mathrm{C}, \mathrm{d},{ }^{1} \mathrm{~J}_{\mathrm{PC}} 65, \mathrm{C}-1, \mathrm{C}-4$), 30.23 ($2 \mathrm{C}, \mathrm{d}$, $\left.{ }^{1} J_{\mathrm{PC}} 63, \mathrm{C}-5, \mathrm{C}-7\right) ; \delta_{\mathrm{P}} 50.16 ; m / z$ (EI) 222 (M ${ }^{+}, 14 \%$), 207 (100), 179 (55).
trans-1,6-Dimethyl-1-hydroxy-1,6-diphosphoniacyclononane bis(trifluoromethanesulfonate). The above sample was treated with water ($2 \mathrm{mg}, 0.11 \mathrm{mmol}$). Solvent and volatiles were removed in vacuo to leave a white solid $\mathrm{mp} 145-150{ }^{\circ} \mathrm{C}$ (Found: C, 28.2; H, 5.0. $\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{~F}_{6} \mathrm{O}_{7} \mathrm{P}_{2} \mathrm{~S}_{2}$ requires C, 27.6; H, 4.7\%); $\delta_{\mathrm{H}}\left(\mathrm{CD}_{3} \mathrm{CN}\right) 1.90(14 \mathrm{H}, \mathrm{m}), 2.42(8 \mathrm{H}, \mathrm{m}), 6.30\left(1 \mathrm{H}, \mathrm{d},{ }^{1} J_{\mathrm{PH}}\right.$ $503, \mathrm{PH}), 10.50(1 \mathrm{H}, \mathrm{br}, \mathrm{POH}) ; \delta_{\mathrm{C}} 2.89\left[1 \mathrm{C}, \mathrm{d},{ }^{1} J_{\mathrm{PC}} 51\right.$, $\mathrm{CH}_{3} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{2}$], $12.16\left[1 \mathrm{C}, \mathrm{d},{ }^{1} J_{\mathrm{PC}} 60, \mathrm{CH}_{3} \mathrm{PO}\left(\mathrm{CH}_{2}\right)_{2}\right], 15.88(2 \mathrm{C}$, $\left.\mathrm{d},{ }^{1} J_{\mathrm{PC}} 46, \mathrm{C}-4, \mathrm{C}-5\right), 20.07\left(2 \mathrm{C}, \mathrm{d},{ }^{2} J_{\mathrm{PC}} 9, \mathrm{C}-2, \mathrm{C}-7\right), 20.92$ (2 C, $\mathrm{m}, \mathrm{C}-3, \mathrm{C}-6$), 23.41 ($2 \mathrm{C}, \mathrm{d},{ }^{1} J_{\mathrm{PC}} 61, \mathrm{C}-1, \mathrm{C}-8$); $\delta_{\mathrm{P}} 86.50$ (P-1), 7.68 (d, ${ }^{1} J_{\mathrm{PH}} 503, \mathrm{P}-6$).
trans-1,6-Dimethyl-1,6-diphosphacyclodecane-1-oxide 6c. A stirred solution of cis-1,6-dimethyl-1,6-diphosphoniabicyclo[4.4.0]decane bis(trifluoromethanesulfonate) ($156 \mathrm{mg}, 0.31$ $\mathrm{mmol})$ in acetonitrile $\left(2 \mathrm{~cm}^{3}\right)$ was treated with water ($6 \mathrm{mg}, 0.31$ mmol). After five minutes, an aqueous NaOH solution (4 mol $\mathrm{dm}^{-3}, 0.20 \mathrm{~cm}^{3}, 0.80 \mathrm{mmol}$) was added. After one hour, solvent and volatiles were removed in vacuo, and the residue extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(2 \times 5 \mathrm{~cm}^{3}\right)$. Removal of solvent left a colourless solid ($59 \mathrm{mg}, 87 \%$); $\delta_{\mathrm{H}}\left(\mathrm{CD}_{3} \mathrm{CN}\right) 1.55\left[3 \mathrm{H}, \mathrm{d},{ }^{2} J_{\mathrm{PH}} 2\right.$, $\mathrm{CH}_{3} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{2}$, $1.51\left(3 \mathrm{H}, \mathrm{d},{ }^{2} J_{\mathrm{PH}} 12, \mathrm{CH}_{3} \mathrm{PO}\right), 1.60-2.10(16 \mathrm{H}$, $\mathrm{m}) ; \delta_{\mathrm{C}} 11.19\left[1 \mathrm{C}, \mathrm{d},{ }^{1} J_{\mathrm{PC}} 9, \mathrm{CH}_{3} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{2}\right], 15.52\left(1 \mathrm{C}, \mathrm{d},{ }^{1} J_{\mathrm{PC}} 65\right.$, $C_{3} \mathrm{PO}$), 21.07 (2 C, C-3, C-6), $23.40\left(2 \mathrm{C}, \mathrm{t},{ }^{2} J_{\mathrm{PC}} 7,{ }^{3} J_{\mathrm{PC}} 7, \mathrm{C}-2\right.$, C-7), 23.97 ($2 \mathrm{C}, \mathrm{d},{ }^{1} J_{\mathrm{PC}} 17, \mathrm{C}-4, \mathrm{C}-5$), 26.68 ($2 \mathrm{C}, \mathrm{d},{ }^{1} J_{\mathrm{PC}} 63$, $\mathrm{C}-1, \mathrm{C}-8) ; \delta_{\mathrm{P}} 52.29$ (P-1), -37.91 (P-6).
trans-1,6-Dimethyl-1,6-diphosphacyclodecane-1,6-dioxide. A stirred solution of trans-1,6-dimethyl-1,6-diphosphacyclo-decane-1-oxide ($59 \mathrm{mg}, 0.27 \mathrm{mmol}$) in acetonitrile $\left(2 \mathrm{~cm}^{3}\right)$ was treated with an aqueous solution of $\mathrm{H}_{2} \mathrm{O}_{2}\left(30 \% ; 0.03 \mathrm{~cm}^{3}\right)$. After one day, solvent and volatiles were removed in vacuo to leave a solid residue which was recrystallised from methanol and $\mathrm{Et}_{2} \mathrm{O}$ to give a colourless solid ($0.047 \mathrm{~g}, 77 \%$) mp 200-
$210{ }^{\circ} \mathrm{C}$ [Found: 221.0867. $\mathrm{C}_{9} \mathrm{H}_{19} \mathrm{O}_{2} \mathrm{P}_{2}\left(\mathrm{M}-\mathrm{CH}_{3}\right)$ requires $221.0860] ; \delta_{\mathrm{H}}\left(\mathrm{CD}_{3} \mathrm{OD}\right) 1.41\left(6 \mathrm{H}, \mathrm{d},{ }^{2} J_{\mathrm{PH}} 12, \mathrm{C}_{3}\right), 1.65$ $(4 \mathrm{H}, \mathrm{m}), 1.90(12 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}} 15.71\left(2 \mathrm{C}, \mathrm{d},{ }^{1} J_{\mathrm{PC}} 65, \mathrm{CH}_{3}\right), 22.10$ (4 C, d, $\left.{ }^{2} J_{\mathrm{PC}} 7, \mathrm{C}-2, \mathrm{C}-3, \mathrm{C}-5, \mathrm{C}-6\right), 27.21\left(4 \mathrm{C}, \mathrm{d},{ }^{1} J_{\mathrm{PC}} 63, \mathrm{C}-1\right.$, C-4, C-5, C-6); $\delta_{\mathrm{P}} 55.52 ; \mathrm{m} / \mathrm{z}(\mathrm{EI}) 236$ ($\mathrm{M}^{+}, 11 \%$), 221 (100), 193 (35).

trans-Dialkyldiphosphacycloalkanes

trans-1,5-Dimethyl-1,5-diphosphacyclooctane 7a. To a stirred solution of trans-1,5-dimethyl-1,5-diphosphacyclooctane-1oxide ($16 \mathrm{mg}, 0.8 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}\left(4 \mathrm{~cm}^{3}\right)$ and benzene $\left(2 \mathrm{~cm}^{3}\right)$, at $0^{\circ} \mathrm{C}$, was added $\mathrm{LiAlH}_{4}(63 \mathrm{mg}, 1.7 \mathrm{mmol})$. The reaction mixture was heated to reflux overnight, then cooled to $0^{\circ} \mathrm{C}$, treated carefully with aqueous $\mathrm{NaOH}\left(5 \mathrm{~mol} \mathrm{dm}{ }^{-3}, 0.5 \mathrm{~cm}^{3}, 2.5 \mathrm{mmol}\right)$ and stirred for a further 30 minutes at room temperature. The solution was dried (anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$), then filtered through a glass sinter. Removal of solvent in vacuo left a colourless oil (61 $\mathrm{mg}, 43 \%) ; \delta_{\mathrm{H}} 0.82\left(6 \mathrm{H}, \mathrm{d},{ }^{2} J_{\mathrm{PH}} 6, \mathrm{C} H_{3}\right), 1.42(4 \mathrm{H}, \mathrm{m}), 1.53$ $(4 \mathrm{H}, \mathrm{m}) 1.83(4 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}} 12.82\left(2 \mathrm{C}, \mathrm{d},{ }^{1} J_{\mathrm{PC}} 12, \mathrm{CH}_{3}\right), 21.51$ ($2 \mathrm{C}, \mathrm{t},{ }^{2} J_{\mathrm{PC}} 10, \mathrm{C}-2, \mathrm{C}-5$), $28.84\left(4 \mathrm{C}, \mathrm{dd},{ }^{1} J_{\mathrm{PC}} 15,{ }^{3} J_{\mathrm{PC}} 6, \mathrm{C}-1\right.$, $\mathrm{C}-3, \mathrm{C}-4, \mathrm{C}-6) ; \delta_{\mathrm{P}}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right)-39.43 ; m / z(\mathrm{EI}) 176$ ($\left.{ }^{+}, 22.6 \%\right)$, 161 (55).
trans-1,6-Dimethyl-1,6-diphosphacyclononane 7b. To a stirred suspension of trans-1,6-dimethyl-1,6-diphosphacyclononane-1oxide ($127 \mathrm{mg}, 0.62 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}\left(5 \mathrm{~cm}^{3}\right)$ at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{LiAlH}_{4}(46 \mathrm{mg}, 1.2 \mathrm{mmol})$. The mixture was heated to reflux for two days. On cooling to $0{ }^{\circ} \mathrm{C}$, aqueous $\mathrm{NaOH}\left(4 \mathrm{~mol} \mathrm{dm}^{-3}, 0.5\right.$ $\mathrm{cm}^{3}, 2 \mathrm{mmol}$) was added and the mixture left to stir for 30 minutes. Anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ was used to dry the solution, which was filtered through a glass sinter and solvent removed under high vacuum to leave a colourless oil ($73 \mathrm{mg}, 61 \%$); $\delta_{\mathrm{H}}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) 0.93\left(6 \mathrm{H}, \mathrm{d},{ }^{2} J_{\mathrm{PH}} 6, \mathrm{C} H_{3}\right), 1.5(6 \mathrm{H}, \mathrm{m}), 1.7-2.0$ $(8 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}} 12.99\left(2 \mathrm{C}, \mathrm{d},{ }^{1} J_{\mathrm{PC}} 12, \mathrm{C}-1, \mathrm{C}-4\right), 22.57\left(1 \mathrm{C}, \mathrm{t},{ }^{2} J_{\mathrm{PC}}\right.$ 11, C-6), 25.15 ($2 \mathrm{C}, \mathrm{t},{ }^{2} J_{\mathrm{PC}} 9, \mathrm{C}-2, \mathrm{C}-3$), $27.94\left(2 \mathrm{C}, \mathrm{dd},{ }^{1} J_{\mathrm{PC}} 15\right.$, ${ }^{3} J_{\mathrm{PC}} 4, \mathrm{C}-5, \mathrm{C}-7$), 29.98 (2 C, dd, ${ }^{1} J_{\mathrm{PC}} 15,{ }^{3} J_{\mathrm{PC}} 4, \mathrm{C}-2, \mathrm{C}-3$); δ_{P} -40.64.

X-Ray experimental structures of 1,6-diphosphabicyclo[4.3.0]-nonane-1,6-dithione 2b. \mathbf{S}_{2}, 1,6-diphosphabicyclo[4.4.0]decane-1,6-dithione 2c. \mathbf{S}_{2}, 1-methyl-1-phosphonia-5-phosphabicyclo[3.3.0]octane iodide 3a.I, 1-methyl-1-phosphonia-6-phosphabicyclo[4.3.0]nonane iodide 3b.I and 1-methyl-1-phosphonia-6phosphabicyclo[4.4.0]decane iodide 3c.I
Many of the details of the structure analyses carried out on compounds $\mathbf{2 b} . \mathbf{S}_{\mathbf{2}}, \mathbf{2 c} . \mathbf{S}_{2}, \mathbf{3 a} . \mathbf{I}, \mathbf{3 b} . \mathbf{I}$ and $\mathbf{3 c}$.I are listed in Table $5 . \dagger$ X-ray diffraction measurements were made at room temperature using Siemens four-circle $\mathrm{R} 3 \mathrm{~m} / \mathrm{V}$ diffractometers on single crystals mounted in thin-walled glass capillaries with graphite monochromated Mo-K α X-radiation. Cell dimensions for each analysis were determined from the setting angle values of centred reflections.

For each structure analysis intensity data were collected for unique portions of reciprocal space and corrected for Lorentz, polarisation, crystal decay and long-term intensity fluctuations, on the basis of the intensities of three check reflections repeatedly measured during data collection. Corrections for X-ray absorption effects were applied on the basis of azimuthal scan data. The structures were solved by direct methods, and refined by full-matrix least-squares against F. All non-hydrogen atoms were assigned anisotropic displacement parameters and refined without positional constraints or restraints. Molecules of $\mathbf{2 c} . \mathbf{S}_{2}$ lie at sites of crystallographic two-fold symmetry. All hydrogen atoms were constrained to ideal geometries with $\mathrm{C}-\mathrm{H}=0.96 \AA$ and assigned fixed isotropic displacement parameters. An isotropic extinction correction was applied in the case of $\mathbf{2 c} . \mathbf{S}_{2}$, parameter x refined to $0.0167(7)$ where $F_{\mathrm{c}}=F_{\mathrm{c}}^{\text {uncorr. } /(1+0.002}$ $\left.x F_{\mathrm{c}}{ }^{2} / \sin 2 \theta\right)^{1 / 4}$. For 3a.I and 3b.I the absolute structure was confirmed by refinement. ${ }^{30}$ In the structure of $\mathbf{3 c}$.I there are two similar cations and two iodide anions present in the asymmetric unit. The $\mathrm{C}-\mathrm{C}$ bond lengths (which are short), $\mathrm{C}-\mathrm{C}-\mathrm{C}$ angle (which is large) and displacement parameters (which are large) of $\mathrm{C}(6)$ which is in the C_{3} bridge in $\mathbf{2} \mathbf{b} \cdot \mathbf{S}_{\mathbf{2}}$ show signs of local disorder.

Final difference syntheses showed no chemically significant features. Refinements converged smoothly to residuals given in Table 5. Full tables of positional parameters, interatomic distances and bond angles, displacement parameters, hydrogen atomic parameters and observed and calculated structure amplitudes are given in the supplementary material.

Calculations were made with programs of the SHELXTLPLUS ${ }^{31}$ package as implemented on a Siemens R3m/V structure determination system. Complex neutral-atom scattering factors were taken from ref. 32.

Photoelectron spectra

$\mathrm{He}(\mathrm{I})$ photoelectron spectra of $\mathbf{2 a}, \mathbf{2 b}$ and $\mathbf{4 a}$ were recorded at room temp. and 2c and $\mathbf{4 f}$ at $38^{\circ} \mathrm{C}$ with a Perkin-Elmer PS18 instrument. Calibration was with Ar and Xe , with resolution of 0.2 meV on the ${ }^{2} \mathrm{P}_{3 / 2}$ line of Ar.

Acknowledgements

We thank SERC and Eurothane Ltd. for a CASE award (to C. J. H.), EPSRC for a quota award to P. N. T., the DAAD for
\dagger Full crystallographic details, excluding structure factor tables, have been deposited at the Cambridge Crystallographic Data Centre (CCDC). For details of the deposition scheme, see 'Instructions for Authors', J. Chem. Soc., Perkin Trans. 1, available via the RSC Web page (http://www.rsc.org/authors). Any request to the CCDC for this material should quote the full literature citation and the reference number 207/205.
a NATO grant (to C. G.), and Dr M. Murray for assistance with ${ }^{31} \mathrm{P}$ NMR. R. G. and H. L. are grateful to the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie for financial support, and to A. Flatow for recording the PE spectra. H. L. acknowledges a stipend of the Studienstiftung des Deutschen Volkes.

References

1 P. J. Brooks, M. J. Gallagher, A. Sarroff and M. Bowyer, Phosphorus, Sulfur Silicon Relat. Elem., 1989, 44, 235.
2 S. D. Toto, B. W. Arbuckle, P. K. Bharadwaj, J. T. Doi and W. K. Musker, Phosphorus, Sulfur Silicon Relat. Elem., 1991, 56, 27; B. W. Arbuckle and W. K. Musker, Polyhedron, 1991, 10, 415.

3 For a review of ligands of this type see: W. K. Musker, Coord. Chem. Rev., 1992, 117, 133.
4 P. G. Edwards, J. S. Fleming and S. S. Liyanage, Inorg. Chem., 1996, 35, 4563.
5 R. W. Alder, Tetrahedron, 1990, 46, 683.
6 R. W. Alder, C. Ganter, C. J. Harris and A. G. Orpen, J. Chem. Soc., Chem. Commun., 1992, 1172; R. W. Alder, D. D. Ellis, A. G. Orpen and P. N. Taylor, Chem. Commun., 1996, 539.
7 R. W. Alder, C. Ganter, C. J. Harris and A. G. Orpen, J. Chem. Soc., Chem. Comтип., 1992, 1170
8 R. W. Alder, D. D. Ellis, J. K. Hogg, A. Martín, A. G. Orpen and P. N. Taylor, Chem. Commun., 1996, 537

9 R. W. Alder and D. Read, Coord. Chem. Rev., 1998, in press.
10 H. Harting, S. Hickel and R. Richter, Z. Anorg. Allg. Chem., 1979, 458, 130.
11 M. Saunders, K. N. Houk, Y.-D. Wu, W. C. Still, M. Lipton, G. Chang and W. C. Guida, J. Am. Chem. Soc., 1990, 112, 1419 and references therein.
12 T. Kauffmann, E. Antfang and J. Olbrich, Chem. Ber., 1985, 118, 1022.

13 V. L. Foss, Y. A. Veits and I. F. Lutsenko, Zh. Obshch. Khim., 1978, 48, 1705.
14 K. K. Issleib and A. Tzschach, Chem. Ber., 1959, 92, 1397
15 K. Moedritzer and R. R. Irani, J. Inorg. Nucl. Chem., 1961, 22, 297.
16 L. Maiher, Chem. Ber., 1961, 94, 3043.
17 K. Issleib and P. Thorausch, Phosphorus Sulfur Relat. Elem., 1978, 4, 137.
18 L. Horner and W.-D. Balzer, Tetrahedron Lett., 1965, 1157.
19 K. Naumann, G. Zon and K. Mislow, J. Am. Chem. Soc., 1969, 91, 7012.

20 K. M. Pietrusiewicz and M. Zablocka, Chem. Rev., 1994, 94, 1375.
21 E. P. Kyba, J. Am. Chem. Soc., 1975, 97, 2554.
22 V. Mark, C. H. Dungan, M. V. Crytchfield and J. R. van Wazer, Top. Phosphorus Chem., 1967, 5, 227.
23 E. Haselbach, A. Mannschreck and W. Seitz, Helv. Chim. Acta, 1973, 56, 1614; S. F. Nelsen and J. M. Buschek, J. Am. Chem. Soc., 1973, 95, 2011; P. Rademacher, Angew. Chem., Int. Ed. Engl., 1973, 12, 408.
24 W. A. Handerson, Jr. and S. A. Buckler, J. Am. Chem. Soc., 1960, 82, 5794.
25 S. Craddock, E. A. V. Ebsworth, W. J. Savage and R. A. Whiteford, J. Chem. Soc., Faraday Trans. 2, 1972, 68, 934; S. Elbel, H. Bergman and W. Ensslin, ibid., 1974, 70, 555.
26 R. W. Alder, D. D. Ellis, C. J. Harris, A. G. Orpen, D. Read, P. N. Taylor, R. Gleiter and H. Lange, J. Chem. Soc., Perkin Trans. 1, 1998, 1657.
27 D. D. Perrin, W. L. F. Armarego and D. Perrin, Purification of Laboratory Chemicals, Pergamon Press, Oxford, 2nd edn., 1980.
28 K. Moedritzer and R. R. Irani, J. Inorg. Nucl. Chem., 1961, 22, 297.
29 L. Maiher, Chem. Ber., 1961, 94, 3043.
30 D. Rogers, Acta Crystallogr., Sect. A, 1981, 37, 734.
31 G. M. Sheldrick, SHELXTL-PLUS Rev. 4.2, Göttingen, F.R.G., 1990.

32 International Tables for X-Ray Crystallography, vol. IV, 1974, Brimingham, Kynoch Press.

Paper 8/00594J
Received 21st January 1998
Accepted 5th March 1998

